Direct evidence for a pressure-induced nodal superconducting gap in the Ba0.65Rb0.35Fe2As2 superconductor
Z. Guguchia (),
A. Amato,
Jia-Ning Kang,
H. Luetkens,
P. K. Biswas,
G. Prando,
F. von Rohr,
Z. Bukowski,
A. Shengelaya,
H. Keller,
E. Morenzoni,
Rafael M. Fernandes and
R. Khasanov
Additional contact information
Z. Guguchia: Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institute
A. Amato: Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institute
H. Luetkens: Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institute
P. K. Biswas: Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institute
G. Prando: Leibniz-Institut für Festkörper- und Werkstoffforschung (IFW) Dresden
F. von Rohr: Physik-Institut der Universität Zürich
Z. Bukowski: Institute of Low Temperature and Structure Research, Polish Academy of Sciences
A. Shengelaya: Tbilisi State University
H. Keller: Physik-Institut der Universität Zürich
E. Morenzoni: Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institute
Rafael M. Fernandes: School of Physics and Astronomy, University of Minnesota
R. Khasanov: Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institute
Nature Communications, 2015, vol. 6, issue 1, 1-8
Abstract:
Abstract The superconducting gap structure in iron-based high-temperature superconductors (Fe-HTSs) is non-universal. In contrast to other unconventional superconductors, in the Fe-HTSs both d-wave and extended s-wave pairing symmetries are close in energy. Probing the proximity between these very different superconducting states and identifying experimental parameters that can tune them is of central interest. Here we report high-pressure muon spin rotation experiments on the temperature-dependent magnetic penetration depth in the optimally doped nodeless s-wave Fe-HTS Ba0.65Rb0.35Fe2As2. Upon pressure, a strong decrease of the penetration depth in the zero-temperature limit is observed, while the superconducting transition temperature remains nearly constant. More importantly, the low-temperature behaviour of the inverse-squared magnetic penetration depth, which is a direct measure of the superfluid density, changes qualitatively from an exponential saturation at zero pressure to a linear-in-temperature behaviour at higher pressures, indicating that hydrostatic pressure promotes the appearance of nodes in the superconducting gap.
Date: 2015
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/ncomms9863 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms9863
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/ncomms9863
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().