Direct observation and imaging of a spin-wave soliton with p-like symmetry
S. Bonetti (),
R. Kukreja,
Z. Chen,
F. Macià,
J. M. Hernàndez,
A. Eklund,
D. Backes,
J. Frisch,
J. Katine,
G. Malm,
S. Urazhdin,
A. D. Kent,
J. Stöhr,
H. Ohldag and
H. A. Dürr ()
Additional contact information
S. Bonetti: Stanford University
R. Kukreja: Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory
Z. Chen: Stanford University
F. Macià: Grup de Magnetisme, Departament de Física Fonamental, Universitat de Barcelona
J. M. Hernàndez: Grup de Magnetisme, Departament de Física Fonamental, Universitat de Barcelona
A. Eklund: Integrated Devices and Circuits, School of Information and Communication Technology, KTH Royal Institute of Technology
D. Backes: New York University
J. Frisch: SLAC National Accelerator Laboratory
J. Katine: HGST, a Western Digital Company
G. Malm: Integrated Devices and Circuits, School of Information and Communication Technology, KTH Royal Institute of Technology
S. Urazhdin: Emory University
A. D. Kent: New York University
J. Stöhr: Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory
H. Ohldag: Stanford Synchrotron Radiation Laboratory, SLAC National Accelerator Laboratory
H. A. Dürr: Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory
Nature Communications, 2015, vol. 6, issue 1, 1-6
Abstract:
Abstract Spin waves, the collective excitations of spins, can emerge as nonlinear solitons at the nanoscale when excited by an electrical current from a nanocontact. These solitons are expected to have essentially cylindrical symmetry (that is, s-like), but no direct experimental observation exists to confirm this picture. Using a high-sensitivity time-resolved magnetic X-ray microscopy with 50 ps temporal resolution and 35 nm spatial resolution, we are able to create a real-space spin-wave movie and observe the emergence of a localized soliton with a nodal line, that is, with p-like symmetry. Micromagnetic simulations explain the measurements and reveal that the symmetry of the soliton can be controlled by magnetic fields. Our results broaden the understanding of spin-wave dynamics at the nanoscale, with implications for the design of magnetic nanodevices.
Date: 2015
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/ncomms9889 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms9889
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/ncomms9889
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().