EconPapers    
Economics at your fingertips  
 

Quasi one-dimensional band dispersion and surface metallization in long-range ordered polymeric wires

Guillaume Vasseur, Yannick Fagot-Revurat (), Muriel Sicot, Bertrand Kierren, Luc Moreau, Daniel Malterre, Luis Cardenas, Gianluca Galeotti, Josh Lipton-Duffin, Federico Rosei, Marco Di Giovannantonio, Giorgio Contini, Patrick Le Fèvre, François Bertran, Liangbo Liang, Vincent Meunier and Dmitrii F. Perepichka
Additional contact information
Guillaume Vasseur: Institut Jean Lamour, UMR 7198, Université de Lorraine/CNRS
Yannick Fagot-Revurat: Institut Jean Lamour, UMR 7198, Université de Lorraine/CNRS
Muriel Sicot: Institut Jean Lamour, UMR 7198, Université de Lorraine/CNRS
Bertrand Kierren: Institut Jean Lamour, UMR 7198, Université de Lorraine/CNRS
Luc Moreau: Institut Jean Lamour, UMR 7198, Université de Lorraine/CNRS
Daniel Malterre: Institut Jean Lamour, UMR 7198, Université de Lorraine/CNRS
Luis Cardenas: Centre Énergie, Matériaux et Télécommunications, Institut National de la Recherche Scientifique
Gianluca Galeotti: Centre Énergie, Matériaux et Télécommunications, Institut National de la Recherche Scientifique
Josh Lipton-Duffin: Centre Énergie, Matériaux et Télécommunications, Institut National de la Recherche Scientifique
Federico Rosei: Centre Énergie, Matériaux et Télécommunications, Institut National de la Recherche Scientifique
Marco Di Giovannantonio: Instituto di Struttura della Materia, CNR
Giorgio Contini: Instituto di Struttura della Materia, CNR
Patrick Le Fèvre: Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin
François Bertran: Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin
Liangbo Liang: Applied Physics, and Astronomy, Rensselaer Polytechnic Institute
Vincent Meunier: Applied Physics, and Astronomy, Rensselaer Polytechnic Institute
Dmitrii F. Perepichka: McGill University

Nature Communications, 2016, vol. 7, issue 1, 1-9

Abstract: Abstract On-surface covalent self-assembly of organic molecules is a very promising bottom–up approach for producing atomically controlled nanostructures. Due to their highly tuneable properties, these structures may be used as building blocks in electronic carbon-based molecular devices. Following this idea, here we report on the electronic structure of an ordered array of poly(para-phenylene) nanowires produced by surface-catalysed dehalogenative reaction. By scanning tunnelling spectroscopy we follow the quantization of unoccupied molecular states as a function of oligomer length, with Fermi level crossing observed for long chains. Angle-resolved photoelectron spectroscopy reveals a quasi-1D valence band as well as a direct gap of 1.15 eV, as the conduction band is partially filled through adsorption on the surface. Tight-binding modelling and ab initio density functional theory calculations lead to a full description of the band structure, including the gap size and charge transfer mechanisms, highlighting a strong substrate–molecule interaction that drives the system into a metallic behaviour.

Date: 2016
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.nature.com/articles/ncomms10235 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms10235

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/ncomms10235

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms10235