Isotope dependence of the Zeeman effect in lithium-like calcium
Florian Köhler (),
Klaus Blaum,
Michael Block,
Stanislav Chenmarev,
Sergey Eliseev,
Dmitry A. Glazov,
Mikhail Goncharov,
Jiamin Hou,
Anke Kracke,
Dmitri A. Nesterenko,
Yuri N. Novikov,
Wolfgang Quint,
Enrique Minaya Ramirez,
Vladimir M. Shabaev,
Sven Sturm (),
Andrey V. Volotka and
Günter Werth
Additional contact information
Florian Köhler: GSI Helmholtzzentrum für Schwerionenforschung
Klaus Blaum: Max-Planck-Institut für Kernphysik
Michael Block: GSI Helmholtzzentrum für Schwerionenforschung
Stanislav Chenmarev: Max-Planck-Institut für Kernphysik
Sergey Eliseev: Max-Planck-Institut für Kernphysik
Dmitry A. Glazov: St Petersburg State University
Mikhail Goncharov: Max-Planck-Institut für Kernphysik
Jiamin Hou: Max-Planck-Institut für Kernphysik
Anke Kracke: Max-Planck-Institut für Kernphysik
Dmitri A. Nesterenko: Petersburg Nuclear Physics Institute
Yuri N. Novikov: Max-Planck-Institut für Kernphysik
Wolfgang Quint: GSI Helmholtzzentrum für Schwerionenforschung
Enrique Minaya Ramirez: Max-Planck-Institut für Kernphysik
Vladimir M. Shabaev: St Petersburg State University
Sven Sturm: Max-Planck-Institut für Kernphysik
Andrey V. Volotka: St Petersburg State University
Günter Werth: Institut für Physik, Johannes Gutenberg-Universität
Nature Communications, 2016, vol. 7, issue 1, 1-8
Abstract:
Abstract The magnetic moment μ of a bound electron, generally expressed by the g-factor μ=−g μB s ħ−1 with μB the Bohr magneton and s the electron’s spin, can be calculated by bound-state quantum electrodynamics (BS-QED) to very high precision. The recent ultra-precise experiment on hydrogen-like silicon determined this value to eleven significant digits, and thus allowed to rigorously probe the validity of BS-QED. Yet, the investigation of one of the most interesting contribution to the g-factor, the relativistic interaction between electron and nucleus, is limited by our knowledge of BS-QED effects. By comparing the g-factors of two isotopes, it is possible to cancel most of these contributions and sensitively probe nuclear effects. Here, we present calculations and experiments on the isotope dependence of the Zeeman effect in lithium-like calcium ions. The good agreement between the theoretical predicted recoil contribution and the high-precision g-factor measurements paves the way for a new generation of BS-QED tests.
Date: 2016
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/ncomms10246 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms10246
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/ncomms10246
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().