EconPapers    
Economics at your fingertips  
 

Quantifying the origin of metallic glass formation

W. L. Johnson (), J. H. Na and M. D. Demetriou
Additional contact information
W. L. Johnson: Keck Laboratory of Engineering, 138-78 California Institute of Technology
J. H. Na: Glassimetal Technology Inc.
M. D. Demetriou: Keck Laboratory of Engineering, 138-78 California Institute of Technology

Nature Communications, 2016, vol. 7, issue 1, 1-7

Abstract: Abstract The waiting time to form a crystal in a unit volume of homogeneous undercooled liquid exhibits a pronounced minimum τX* at a ‘nose temperature’ T* located between the glass transition temperature Tg, and the crystal melting temperature, TL. Turnbull argued that τX* should increase rapidly with the dimensionless ratio trg=Tg/TL. Angell introduced a dimensionless ‘fragility parameter’, m, to characterize the fall of atomic mobility with temperature above Tg. Both trg and m are widely thought to play a significant role in determining τX*. Here we survey and assess reported data for TL, Tg, trg, m and τX* for a broad range of metallic glasses with widely varying τX*. By analysing this database, we derive a simple empirical expression for τX*(trg, m) that depends exponentially on trg and m, and two fitting parameters. A statistical analysis shows that knowledge of trg and m alone is therefore sufficient to predict τX* within estimated experimental errors. Surprisingly, the liquid/crystal interfacial free energy does not appear in this expression for τX*.

Date: 2016
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.nature.com/articles/ncomms10313 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms10313

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/ncomms10313

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms10313