A four-coordinate cobalt(II) single-ion magnet with coercivity and a very high energy barrier
Yvonne Rechkemmer,
Frauke D. Breitgoff,
Margarethe van der Meer,
Mihail Atanasov (),
Michael Hakl,
Milan Orlita,
Petr Neugebauer,
Frank Neese,
Biprajit Sarkar () and
Joris van Slageren ()
Additional contact information
Yvonne Rechkemmer: Institut für Physikalische Chemie, Universität Stuttgart
Frauke D. Breitgoff: Institut für Physikalische Chemie, Universität Stuttgart
Margarethe van der Meer: Institut für Chemie und Biochemie, Anorganische Chemie, Freie Universität Berlin
Mihail Atanasov: Max Planck Institute for Chemical Energy Conversion
Michael Hakl: Laboratoire national des champs magnétiques intenses, CNRS-UJF-UPS-INS
Milan Orlita: Laboratoire national des champs magnétiques intenses, CNRS-UJF-UPS-INS
Petr Neugebauer: Institut für Physikalische Chemie, Universität Stuttgart
Frank Neese: Max Planck Institute for Chemical Energy Conversion
Biprajit Sarkar: Institut für Chemie und Biochemie, Anorganische Chemie, Freie Universität Berlin
Joris van Slageren: Institut für Physikalische Chemie, Universität Stuttgart
Nature Communications, 2016, vol. 7, issue 1, 1-8
Abstract:
Abstract Single-molecule magnets display magnetic bistability of molecular origin, which may one day be exploited in magnetic data storage devices. Recently it was realised that increasing the magnetic moment of polynuclear molecules does not automatically lead to a substantial increase in magnetic bistability. Attention has thus increasingly focussed on ions with large magnetic anisotropies, especially lanthanides. In spite of large effective energy barriers towards relaxation of the magnetic moment, this has so far not led to a big increase in magnetic bistability. Here we present a comprehensive study of a mononuclear, tetrahedrally coordinated cobalt(II) single-molecule magnet, which has a very high effective energy barrier and displays pronounced magnetic bistability. The combined experimental-theoretical approach enables an in-depth understanding of the origin of these favourable properties, which are shown to arise from a strong ligand field in combination with axial distortion. Our findings allow formulation of clear design principles for improved materials.
Date: 2016
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.nature.com/articles/ncomms10467 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms10467
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/ncomms10467
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().