EconPapers    
Economics at your fingertips  
 

Suppression law of quantum states in a 3D photonic fast Fourier transform chip

Andrea Crespi, Roberto Osellame (), Roberta Ramponi, Marco Bentivegna, Fulvio Flamini, Nicolò Spagnolo, Niko Viggianiello, Luca Innocenti, Paolo Mataloni and Fabio Sciarrino ()
Additional contact information
Andrea Crespi: Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche (IFN-CNR)
Roberto Osellame: Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche (IFN-CNR)
Roberta Ramponi: Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche (IFN-CNR)
Marco Bentivegna: Sapienza Università di Roma
Fulvio Flamini: Sapienza Università di Roma
Nicolò Spagnolo: Sapienza Università di Roma
Niko Viggianiello: Sapienza Università di Roma
Luca Innocenti: Sapienza Università di Roma
Paolo Mataloni: Sapienza Università di Roma
Fabio Sciarrino: Sapienza Università di Roma

Nature Communications, 2016, vol. 7, issue 1, 1-8

Abstract: Abstract The identification of phenomena able to pinpoint quantum interference is attracting large interest. Indeed, a generalization of the Hong–Ou–Mandel effect valid for any number of photons and optical modes would represent an important leap ahead both from a fundamental perspective and for practical applications, such as certification of photonic quantum devices, whose computational speedup is expected to depend critically on multi-particle interference. Quantum distinctive features have been predicted for many particles injected into multimode interferometers implementing the Fourier transform over the optical modes. Here we develop a scalable approach for the implementation of the fast Fourier transform algorithm using three-dimensional photonic integrated interferometers, fabricated via femtosecond laser writing technique. We observe the suppression law for a large number of output states with four- and eight-mode optical circuits: the experimental results demonstrate genuine quantum interference between the injected photons, thus offering a powerful tool for diagnostic of photonic platforms.

Date: 2016
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/ncomms10469 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms10469

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/ncomms10469

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms10469