Theory of antiskyrmions in magnets
Wataru Koshibae () and
Naoto Nagaosa ()
Additional contact information
Wataru Koshibae: RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
Naoto Nagaosa: RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
Nature Communications, 2016, vol. 7, issue 1, 1-8
Abstract:
Abstract Skyrmions and antiskyrmions are swirling topological magnetic textures realized as emergent particles in magnets. A skyrmion is stabilized by the Dzyaloshinskii–Moriya interaction in chiral magnets and/or a dipolar interaction in thin film magnets, which prefer the twist of the magnetic moments. Here we show by a numerical simulation of the Landau–Lifshitz–Gilbert equation that pairs of skyrmions and antiskyrmions are created from the helix state as the magnetic field is increased. Antiskyrmions are unstable and disappear immediately in chiral magnets, whereas they are metastable and survive in dipolar magnets. The collision between a skyrmion and an antiskyrmion in a dipolar magnet is also studied. It is found that the collision depends on their relative direction, and the pair annihilation occurs in some cases and only the antiskyrmion is destroyed in the other cases. These results indicate that the antiskyrmion offers a unique opportunity to study particles and antiparticles in condensed-matter systems.
Date: 2016
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://www.nature.com/articles/ncomms10542 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms10542
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/ncomms10542
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().