Spectral phase measurement of a Fano resonance using tunable attosecond pulses
M. Kotur,
D. Guénot,
Á Jiménez-Galán,
D. Kroon,
E. W. Larsen,
M. Louisy,
S. Bengtsson,
M. Miranda,
J. Mauritsson,
C. L. Arnold,
S. E. Canton,
M. Gisselbrecht,
T. Carette,
J. M. Dahlström,
E. Lindroth,
A. Maquet,
L. Argenti,
F. Martín and
A. L’Huillier ()
Additional contact information
M. Kotur: Lund University
D. Guénot: Lund University
Á Jiménez-Galán: Módulo 13, Universidad Autónoma de Madrid
D. Kroon: Lund University
E. W. Larsen: Lund University
M. Louisy: Lund University
S. Bengtsson: Lund University
M. Miranda: Lund University
J. Mauritsson: Lund University
C. L. Arnold: Lund University
S. E. Canton: Max IV Laboratory, Lund University
M. Gisselbrecht: Lund University
T. Carette: AlbaNova University Center, Stockholm University
J. M. Dahlström: AlbaNova University Center, Stockholm University
E. Lindroth: AlbaNova University Center, Stockholm University
A. Maquet: Laboratoire de Chimie Physique-Matière et Rayonnement, Université Pierre et Marie Curie
L. Argenti: Módulo 13, Universidad Autónoma de Madrid
F. Martín: Módulo 13, Universidad Autónoma de Madrid
A. L’Huillier: Lund University
Nature Communications, 2016, vol. 7, issue 1, 1-6
Abstract:
Abstract Electron dynamics induced by resonant absorption of light is of fundamental importance in nature and has been the subject of countless studies in many scientific areas. Above the ionization threshold of atomic or molecular systems, the presence of discrete states leads to autoionization, which is an interference between two quantum paths: direct ionization and excitation of the discrete state coupled to the continuum. Traditionally studied with synchrotron radiation, the probability for autoionization exhibits a universal Fano intensity profile as a function of excitation energy. However, without additional phase information, the full temporal dynamics cannot be recovered. Here we use tunable attosecond pulses combined with weak infrared radiation in an interferometric setup to measure not only the intensity but also the phase variation of the photoionization amplitude across an autoionization resonance in argon. The phase variation can be used as a fingerprint of the interactions between the discrete state and the ionization continua, indicating a new route towards monitoring electron correlations in time.
Date: 2016
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.nature.com/articles/ncomms10566 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms10566
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/ncomms10566
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().