Photoresponse of supramolecular self-assembled networks on graphene–diamond interfaces
Sarah Wieghold,
Juan Li,
Patrick Simon,
Maximilian Krause,
Yuri Avlasevich,
Chen Li,
Jose A. Garrido,
Ueli Heiz,
Paolo Samorì,
Klaus Müllen (),
Friedrich Esch (),
Johannes V. Barth () and
Carlos-Andres Palma ()
Additional contact information
Sarah Wieghold: Technische Universität München
Juan Li: Catalysis Research Center, Technische Universität München
Patrick Simon: Technische Universität München
Maximilian Krause: Technische Universität München
Yuri Avlasevich: Max Planck Institute for Polymer Research
Chen Li: Max Planck Institute for Polymer Research
Jose A. Garrido: Technische Universität München
Ueli Heiz: Technische Universität München
Paolo Samorì: ISIS & icFRC, Université de Strasbourg & CNRS
Klaus Müllen: Max Planck Institute for Polymer Research
Friedrich Esch: Technische Universität München
Johannes V. Barth: Catalysis Research Center, Technische Universität München
Carlos-Andres Palma: Catalysis Research Center, Technische Universität München
Nature Communications, 2016, vol. 7, issue 1, 1-8
Abstract:
Abstract Nature employs self-assembly to fabricate the most complex molecularly precise machinery known to man. Heteromolecular, two-dimensional self-assembled networks provide a route to spatially organize different building blocks relative to each other, enabling synthetic molecularly precise fabrication. Here we demonstrate optoelectronic function in a near-to-monolayer molecular architecture approaching atomically defined spatial disposition of all components. The active layer consists of a self-assembled terrylene-based dye, forming a bicomponent supramolecular network with melamine. The assembly at the graphene-diamond interface shows an absorption maximum at 740 nm whereby the photoresponse can be measured with a gallium counter electrode. We find photocurrents of 0.5 nA and open-circuit voltages of 270 mV employing 19 mW cm−2 irradiation intensities at 710 nm. With an ex situ calculated contact area of 9.9 × 102 μm2, an incident photon to current efficiency of 0.6% at 710 nm is estimated, opening up intriguing possibilities in bottom-up optoelectronic device fabrication with molecular resolution.
Date: 2016
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/ncomms10700 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms10700
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/ncomms10700
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().