Magnon spectrum of the helimagnetic insulator Cu2OSeO3
P. Y. Portnichenko,
J. Romhányi,
Y. A. Onykiienko,
A. Henschel,
M. Schmidt,
A. S. Cameron,
M. A. Surmach,
J. A. Lim,
J. T. Park,
A. Schneidewind,
D. L. Abernathy,
H. Rosner,
Jeroen van den Brink and
D. S. Inosov ()
Additional contact information
P. Y. Portnichenko: Institut für Festkörperphysik, TU Dresden
J. Romhányi: Max Planck Institute for Solid State Research
Y. A. Onykiienko: Institut für Festkörperphysik, TU Dresden
A. Henschel: Max Planck Institute for Chemical Physics of Solids
M. Schmidt: Max Planck Institute for Chemical Physics of Solids
A. S. Cameron: Institut für Festkörperphysik, TU Dresden
M. A. Surmach: Institut für Festkörperphysik, TU Dresden
J. A. Lim: Institut für Festkörperphysik, TU Dresden
J. T. Park: Heinz Maier-Leibnitz Zentrum (MLZ), TU München
A. Schneidewind: Jülich Centre for Neutron Science (JCNS), Forschungszentrum Jülich GmbH, Outstation at Heinz Maier-Leibnitz Zentrum (MLZ)
D. L. Abernathy: Oak Ridge National Laboratory (ORNL)
H. Rosner: Max Planck Institute for Chemical Physics of Solids
Jeroen van den Brink: Leibniz Institute for Solid State and Materials Research, IFW Dresden
D. S. Inosov: Institut für Festkörperphysik, TU Dresden
Nature Communications, 2016, vol. 7, issue 1, 1-8
Abstract:
Abstract Complex low-temperature-ordered states in chiral magnets are typically governed by a competition between multiple magnetic interactions. The chiral-lattice multiferroic Cu2OSeO3 became the first insulating helimagnetic material in which a long-range order of topologically stable spin vortices known as skyrmions was established. Here we employ state-of-the-art inelastic neutron scattering to comprehend the full three-dimensional spin-excitation spectrum of Cu2OSeO3 over a broad range of energies. Distinct types of high- and low-energy dispersive magnon modes separated by an extensive energy gap are observed in excellent agreement with the previously suggested microscopic theory based on a model of entangled Cu4 tetrahedra. The comparison of our neutron spectroscopy data with model spin-dynamical calculations based on these theoretical proposals enables an accurate quantitative verification of the fundamental magnetic interactions in Cu2OSeO3 that are essential for understanding its abundant low-temperature magnetically ordered phases.
Date: 2016
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/ncomms10725 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms10725
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/ncomms10725
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().