EconPapers    
Economics at your fingertips  
 

CSF-contacting neurons regulate locomotion by relaying mechanical stimuli to spinal circuits

Urs Lucas Böhm, Andrew Prendergast, Lydia Djenoune, Sophie Nunes Figueiredo, Johanna Gomez, Caleb Stokes, Sonya Kaiser, Maximilliano Suster, Koichi Kawakami, Marine Charpentier, Jean-Paul Concordet, Jean-Paul Rio, Filippo Del Bene and Claire Wyart ()
Additional contact information
Urs Lucas Böhm: Institut du Cerveau et de la Moelle épinière
Andrew Prendergast: Institut du Cerveau et de la Moelle épinière
Lydia Djenoune: Institut du Cerveau et de la Moelle épinière
Sophie Nunes Figueiredo: Institut du Cerveau et de la Moelle épinière
Johanna Gomez: Institut du Cerveau et de la Moelle épinière
Caleb Stokes: Institut du Cerveau et de la Moelle épinière
Sonya Kaiser: Institut du Cerveau et de la Moelle épinière
Maximilliano Suster: Neural Circuits and Behaviour Group, University of Bergen
Koichi Kawakami: Sokendai (The Graduate University for Advanced Studies)
Marine Charpentier: Muséum National d’Histoire Naturelle
Jean-Paul Concordet: Muséum National d’Histoire Naturelle
Jean-Paul Rio: Institut du Cerveau et de la Moelle épinière
Filippo Del Bene: Institut Curie
Claire Wyart: Institut du Cerveau et de la Moelle épinière

Nature Communications, 2016, vol. 7, issue 1, 1-8

Abstract: Abstract Throughout vertebrates, cerebrospinal fluid-contacting neurons (CSF-cNs) are ciliated cells surrounding the central canal in the ventral spinal cord. Their contribution to modulate locomotion remains undetermined. Recently, we have shown CSF-cNs modulate locomotion by directly projecting onto the locomotor central pattern generators (CPGs), but the sensory modality these cells convey to spinal circuits and their relevance to innate locomotion remain elusive. Here, we demonstrate in vivo that CSF-cNs form an intraspinal mechanosensory organ that detects spinal bending. By performing calcium imaging in moving animals, we show that CSF-cNs respond to both passive and active bending of the spinal cord. In mutants for the channel Pkd2l1, CSF-cNs lose their response to bending and animals show a selective reduction of tail beat frequency, confirming the central role of this feedback loop for optimizing locomotion. Altogether, our study reveals that CSF-cNs constitute a mechanosensory organ operating during locomotion to modulate spinal CPGs.

Date: 2016
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/ncomms10866 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms10866

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/ncomms10866

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms10866