EconPapers    
Economics at your fingertips  
 

GSG1L suppresses AMPA receptor-mediated synaptic transmission and uniquely modulates AMPA receptor kinetics in hippocampal neurons

Xinglong Gu, Xia Mao, Marc P. Lussier, Mary Anne Hutchison, Liang Zhou, F. Kent Hamra, Katherine W. Roche and Wei Lu ()
Additional contact information
Xinglong Gu: Synapse and Neural Circuit Research Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 35 Convent Drive, 3C1000, Bethesda, Maryland 20892, USA
Xia Mao: Synapse and Neural Circuit Research Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 35 Convent Drive, 3C1000, Bethesda, Maryland 20892, USA
Marc P. Lussier: Receptor Biology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 35 Convent Drive, 2C903, Bethesda, Maryland 20892, USA
Mary Anne Hutchison: Synapse and Neural Circuit Research Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 35 Convent Drive, 3C1000, Bethesda, Maryland 20892, USA
Liang Zhou: Synapse and Neural Circuit Research Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 35 Convent Drive, 3C1000, Bethesda, Maryland 20892, USA
F. Kent Hamra: Cecil H. & Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center in Dallas
Katherine W. Roche: Receptor Biology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 35 Convent Drive, 2C903, Bethesda, Maryland 20892, USA
Wei Lu: Synapse and Neural Circuit Research Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 35 Convent Drive, 3C1000, Bethesda, Maryland 20892, USA

Nature Communications, 2016, vol. 7, issue 1, 1-18

Abstract: Abstract Regulation of AMPA receptor (AMPAR)-mediated synaptic transmission is a key mechanism for synaptic plasticity. In the brain, AMPARs assemble with a number of auxiliary subunits, including TARPs, CNIHs and CKAMP44, which are important for AMPAR forward trafficking to synapses. Here we report that the membrane protein GSG1L negatively regulates AMPAR-mediated synaptic transmission. Overexpression of GSG1L strongly suppresses, and GSG1L knockout (KO) enhances, AMPAR-mediated synaptic transmission. GSG1L-dependent regulation of AMPAR synaptic transmission relies on the first extracellular loop domain and its carboxyl-terminus. GSG1L also speeds up AMPAR deactivation and desensitization in hippocampal CA1 neurons, in contrast to the effects of TARPs and CNIHs. Furthermore, GSG1L association with AMPARs inhibits CNIH2-induced slowing of the receptors in heterologous cells. Finally, GSG1L KO rats have deficits in LTP and show behavioural abnormalities in object recognition tests. These data demonstrate that GSG1L represents a new class of auxiliary subunit with distinct functional properties for AMPARs.

Date: 2016
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.nature.com/articles/ncomms10873 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms10873

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/ncomms10873

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms10873