Nanosecond formation of diamond and lonsdaleite by shock compression of graphite
D. Kraus (),
A. Ravasio,
M. Gauthier,
D. O. Gericke,
J. Vorberger,
S. Frydrych,
J. Helfrich,
L. B. Fletcher,
G. Schaumann,
B. Nagler,
B. Barbrel,
B. Bachmann,
E. J. Gamboa,
S. Göde,
E. Granados,
G. Gregori,
H. J. Lee,
P. Neumayer,
W. Schumaker,
T. Döppner,
R. W. Falcone,
S. H. Glenzer and
M. Roth
Additional contact information
D. Kraus: University of California
A. Ravasio: SLAC National Accelerator Laboratory
M. Gauthier: SLAC National Accelerator Laboratory
D. O. Gericke: Centre for Fusion, Space and Astrophysics, University of Warwick
J. Vorberger: Max-Planck-Institut für Physik Komplexer Systeme
S. Frydrych: Institut für Kernphysik, Technische Universität Darmstadt
J. Helfrich: Institut für Kernphysik, Technische Universität Darmstadt
L. B. Fletcher: SLAC National Accelerator Laboratory
G. Schaumann: Institut für Kernphysik, Technische Universität Darmstadt
B. Nagler: SLAC National Accelerator Laboratory
B. Barbrel: University of California
B. Bachmann: Lawrence Livermore National Laboratory
E. J. Gamboa: SLAC National Accelerator Laboratory
S. Göde: SLAC National Accelerator Laboratory
E. Granados: SLAC National Accelerator Laboratory
G. Gregori: University of Oxford
H. J. Lee: SLAC National Accelerator Laboratory
P. Neumayer: GSI Helmholtzzentrum für Schwerionenforschung
W. Schumaker: SLAC National Accelerator Laboratory
T. Döppner: Lawrence Livermore National Laboratory
R. W. Falcone: University of California
S. H. Glenzer: SLAC National Accelerator Laboratory
M. Roth: Institut für Kernphysik, Technische Universität Darmstadt
Nature Communications, 2016, vol. 7, issue 1, 1-6
Abstract:
Abstract The shock-induced transition from graphite to diamond has been of great scientific and technological interest since the discovery of microscopic diamonds in remnants of explosively driven graphite. Furthermore, shock synthesis of diamond and lonsdaleite, a speculative hexagonal carbon polymorph with unique hardness, is expected to happen during violent meteor impacts. Here, we show unprecedented in situ X-ray diffraction measurements of diamond formation on nanosecond timescales by shock compression of pyrolytic as well as polycrystalline graphite to pressures from 19 GPa up to 228 GPa. While we observe the transition to diamond starting at 50 GPa for both pyrolytic and polycrystalline graphite, we also record the direct formation of lonsdaleite above 170 GPa for pyrolytic samples only. Our experiment provides new insights into the processes of the shock-induced transition from graphite to diamond and uniquely resolves the dynamics that explain the main natural occurrence of the lonsdaleite crystal structure being close to meteor impact sites.
Date: 2016
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.nature.com/articles/ncomms10970 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms10970
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/ncomms10970
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().