Subterahertz dielectric relaxation in lead-free Ba(Zr,Ti)O3 relaxor ferroelectrics
D. Wang (),
A. A. Bokov (),
Z.-G. Ye,
J. Hlinka and
L. Bellaiche
Additional contact information
D. Wang: Electronic Materials Research Laboratory—Key Laboratory of the Ministry of Education and International Center for Dielectric Research, School of Electronic and Information Engineering, Xi’an Jiaotong University, No. 28, Xianning West Road, Xi’an 710049, China
A. A. Bokov: Simon Fraser University
Z.-G. Ye: Electronic Materials Research Laboratory—Key Laboratory of the Ministry of Education and International Center for Dielectric Research, School of Electronic and Information Engineering, Xi’an Jiaotong University, No. 28, Xianning West Road, Xi’an 710049, China
J. Hlinka: The Czech Academy of Sciences
L. Bellaiche: University of Arkansas
Nature Communications, 2016, vol. 7, issue 1, 1-7
Abstract:
Abstract Relaxors are complex materials with unusual properties that have been puzzling the scientific community since their discovery. The main characteristic of relaxors, that is, their dielectric relaxation, remains unclear and is still under debate. The difficulty to conduct measurements at frequencies ranging from ≃1 GHz to ≃1 THz and the challenge of developing models to capture their complex dynamical responses are among the reasons for such a situation. Here, we report first-principles-based molecular dynamic simulations of lead-free Ba(Zr0.5Ti0.5)O3, which allows us to obtain its subterahertz dynamics. This approach reproduces the striking characteristics of relaxors including the dielectric relaxation, the constant-loss behaviour, the diffuse maximum in the temperature dependence of susceptibility, the substantial widening of dielectric spectrum on cooling and the resulting Vogel–Fulcher law. The simulations further relate such features to the decomposed dielectric responses, each associated with its own polarization mechanism, therefore, enhancing the current understanding of relaxor behaviour.
Date: 2016
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/ncomms11014 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms11014
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/ncomms11014
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().