X-ray scattering measurements of dissociation-induced metallization of dynamically compressed deuterium
P. Davis (),
T. Döppner,
J. R. Rygg,
C. Fortmann,
L. Divol,
A. Pak,
L. Fletcher,
A. Becker,
B. Holst,
P. Sperling,
R. Redmer,
M. P. Desjarlais,
P. Celliers,
G. W. Collins,
O. L. Landen,
R. W. Falcone and
S. H. Glenzer ()
Additional contact information
P. Davis: University of California
T. Döppner: Lawrence Livermore National Laboratory
J. R. Rygg: Lawrence Livermore National Laboratory
C. Fortmann: Lawrence Livermore National Laboratory
L. Divol: Lawrence Livermore National Laboratory
A. Pak: Lawrence Livermore National Laboratory
L. Fletcher: SLAC National Accelerator Laboratory
A. Becker: Institut für Physik, Universität Rostock
B. Holst: Institut für Physik, Universität Rostock
P. Sperling: Institut für Physik, Universität Rostock
R. Redmer: Institut für Physik, Universität Rostock
M. P. Desjarlais: Sandia National Laboratories
P. Celliers: Lawrence Livermore National Laboratory
G. W. Collins: Lawrence Livermore National Laboratory
O. L. Landen: Lawrence Livermore National Laboratory
R. W. Falcone: University of California
S. H. Glenzer: SLAC National Accelerator Laboratory
Nature Communications, 2016, vol. 7, issue 1, 1-8
Abstract:
Abstract Hydrogen, the simplest element in the universe, has a surprisingly complex phase diagram. Because of applications to planetary science, inertial confinement fusion and fundamental physics, its high-pressure properties have been the subject of intense study over the past two decades. While sophisticated static experiments have probed hydrogen’s structure at ever higher pressures, studies examining the higher-temperature regime using dynamic compression have mostly been limited to optical measurement techniques. Here we present spectrally resolved x-ray scattering measurements from plasmons in dynamically compressed deuterium. Combined with Compton scattering, and velocity interferometry to determine shock pressure and mass density, this allows us to extract ionization state as a function of compression. The onset of ionization occurs close in pressure to where density functional theory-molecular dynamics (DFT-MD) simulations show molecular dissociation, suggesting hydrogen transitions from a molecular and insulating fluid to a conducting state without passing through an intermediate atomic phase.
Date: 2016
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/ncomms11189 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms11189
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/ncomms11189
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().