EconPapers    
Economics at your fingertips  
 

Transformation of metal-organic frameworks for molecular sieving membranes

Wanbin Li, Yufan Zhang, Congyang Zhang, Qin Meng, Zehai Xu, Pengcheng Su, Qingbiao Li, Chong Shen, Zheng Fan, Lei Qin and Guoliang Zhang ()
Additional contact information
Wanbin Li: Institute of Oceanic and Environmental Chemical Engineering, State Key Lab Breeding Base of Green Chemical Synthesis Technology and Collaborative Innovation Center of Membrane Separation and Water Treatment of Zhejiang Province, Zhejiang University of Technology, Chaowang Road 18#
Yufan Zhang: College of Engineering, University of California
Congyang Zhang: Institute of Oceanic and Environmental Chemical Engineering, State Key Lab Breeding Base of Green Chemical Synthesis Technology and Collaborative Innovation Center of Membrane Separation and Water Treatment of Zhejiang Province, Zhejiang University of Technology, Chaowang Road 18#
Qin Meng: College of Chemical and Biological Engineering, State Key Laboratory of Chemical Engineering, Zhejiang University
Zehai Xu: Institute of Oceanic and Environmental Chemical Engineering, State Key Lab Breeding Base of Green Chemical Synthesis Technology and Collaborative Innovation Center of Membrane Separation and Water Treatment of Zhejiang Province, Zhejiang University of Technology, Chaowang Road 18#
Pengcheng Su: Institute of Oceanic and Environmental Chemical Engineering, State Key Lab Breeding Base of Green Chemical Synthesis Technology and Collaborative Innovation Center of Membrane Separation and Water Treatment of Zhejiang Province, Zhejiang University of Technology, Chaowang Road 18#
Qingbiao Li: College of Chemistry and Chemical Engineering, National Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, Key Lab for Chemical Biology of Fujian Province, Xiamen University
Chong Shen: College of Chemical and Biological Engineering, State Key Laboratory of Chemical Engineering, Zhejiang University
Zheng Fan: Institute of Oceanic and Environmental Chemical Engineering, State Key Lab Breeding Base of Green Chemical Synthesis Technology and Collaborative Innovation Center of Membrane Separation and Water Treatment of Zhejiang Province, Zhejiang University of Technology, Chaowang Road 18#
Lei Qin: Institute of Oceanic and Environmental Chemical Engineering, State Key Lab Breeding Base of Green Chemical Synthesis Technology and Collaborative Innovation Center of Membrane Separation and Water Treatment of Zhejiang Province, Zhejiang University of Technology, Chaowang Road 18#
Guoliang Zhang: Institute of Oceanic and Environmental Chemical Engineering, State Key Lab Breeding Base of Green Chemical Synthesis Technology and Collaborative Innovation Center of Membrane Separation and Water Treatment of Zhejiang Province, Zhejiang University of Technology, Chaowang Road 18#

Nature Communications, 2016, vol. 7, issue 1, 1-9

Abstract: Abstract The development of simple, versatile strategies for the synthesis of metal-organic framework (MOF)-derived membranes are of increasing scientific interest, but challenges exist in understanding suitable fabrication mechanisms. Here we report a route for the complete transformation of a series of MOF membranes and particles, based on multivalent cation substitution. Through our approach, the effective pore size can be reduced through the immobilization of metal salt residues in the cavities, and appropriate MOF crystal facets can be exposed, to achieve competitive molecular sieving capabilities. The method can also be used more generally for the synthesis of a variety of MOF membranes and particles. Importantly, we design and synthesize promising MOF membranes candidates that are hard to achieve through conventional methods. For example, our CuBTC/MIL-100 membrane exhibits 89, 171, 241 and 336 times higher H2 permeance than that of CO2, O2, N2 and CH4, respectively.

Date: 2016
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.nature.com/articles/ncomms11315 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms11315

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/ncomms11315

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms11315