Statistical moments of quantum-walk dynamics reveal topological quantum transitions
Filippo Cardano,
Maria Maffei,
Francesco Massa,
Bruno Piccirillo,
Corrado de Lisio,
Giulio De Filippis,
Vittorio Cataudella,
Enrico Santamato and
Lorenzo Marrucci ()
Additional contact information
Filippo Cardano: Università di Napoli Federico II, Complesso Universitario di Monte Sant’Angelo
Maria Maffei: Università di Napoli Federico II, Complesso Universitario di Monte Sant’Angelo
Francesco Massa: Università di Napoli Federico II, Complesso Universitario di Monte Sant’Angelo
Bruno Piccirillo: Università di Napoli Federico II, Complesso Universitario di Monte Sant’Angelo
Corrado de Lisio: Università di Napoli Federico II, Complesso Universitario di Monte Sant’Angelo
Giulio De Filippis: Università di Napoli Federico II, Complesso Universitario di Monte Sant’Angelo
Vittorio Cataudella: Università di Napoli Federico II, Complesso Universitario di Monte Sant’Angelo
Enrico Santamato: Università di Napoli Federico II, Complesso Universitario di Monte Sant’Angelo
Lorenzo Marrucci: Università di Napoli Federico II, Complesso Universitario di Monte Sant’Angelo
Nature Communications, 2016, vol. 7, issue 1, 1-8
Abstract:
Abstract Many phenomena in solid-state physics can be understood in terms of their topological properties. Recently, controlled protocols of quantum walk (QW) are proving to be effective simulators of such phenomena. Here we report the realization of a photonic QW showing both the trivial and the non-trivial topologies associated with chiral symmetry in one-dimensional (1D) periodic systems. We find that the probability distribution moments of the walker position after many steps can be used as direct indicators of the topological quantum transition: while varying a control parameter that defines the system phase, these moments exhibit a slope discontinuity at the transition point. Numerical simulations strongly support the conjecture that these features are general of 1D topological systems. Extending this approach to higher dimensions, different topological classes, and other typologies of quantum phases may offer general instruments for investigating and experimentally detecting quantum transitions in such complex systems.
Date: 2016
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.nature.com/articles/ncomms11439 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms11439
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/ncomms11439
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().