Tunnel electroresistance through organic ferroelectrics
B. B. Tian,
J. L. Wang (),
S. Fusil,
Y. Liu,
X. L. Zhao,
S. Sun,
H. Shen,
T. Lin,
J. L. Sun,
C. G. Duan (),
M. Bibes,
A. Barthélémy,
B. Dkhil,
V. Garcia (),
X. J. Meng and
J. H. Chu
Additional contact information
B. B. Tian: National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences
J. L. Wang: National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences
S. Fusil: Unité Mixte de Physique, CNRS, Thales, Univ. Paris-Sud, Université Paris-Saclay
Y. Liu: Laboratoire Structures, Propriétés et Modélisation des Solides, CentraleSupélec, CNRS-UMR8580, Université Paris-Saclay
X. L. Zhao: National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences
S. Sun: National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences
H. Shen: National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences
T. Lin: National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences
J. L. Sun: National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences
C. G. Duan: Key Laboratory of Polar Materials and Devices, Ministry of Education, East China Normal University
M. Bibes: Unité Mixte de Physique, CNRS, Thales, Univ. Paris-Sud, Université Paris-Saclay
A. Barthélémy: Unité Mixte de Physique, CNRS, Thales, Univ. Paris-Sud, Université Paris-Saclay
B. Dkhil: Laboratoire Structures, Propriétés et Modélisation des Solides, CentraleSupélec, CNRS-UMR8580, Université Paris-Saclay
V. Garcia: Unité Mixte de Physique, CNRS, Thales, Univ. Paris-Sud, Université Paris-Saclay
X. J. Meng: National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences
J. H. Chu: National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences
Nature Communications, 2016, vol. 7, issue 1, 1-6
Abstract:
Abstract Organic electronics is emerging for large-area applications such as photovoltaic cells, rollable displays or electronic paper. Its future development and integration will require a simple, low-power organic memory, that can be written, erased and readout electrically. Here we demonstrate a non-volatile memory in which the ferroelectric polarisation state of an organic tunnel barrier encodes the stored information and sets the readout tunnel current. We use high-sensitivity piezoresponse force microscopy to show that films as thin as one or two layers of ferroelectric poly(vinylidene fluoride) remain switchable with low voltages. Submicron junctions based on these films display tunnel electroresistance reaching 1,000% at room temperature that is driven by ferroelectric switching and explained by electrostatic effects in a direct tunnelling regime. Our findings provide a path to develop low-cost, large-scale arrays of organic ferroelectric tunnel junctions on silicon or flexible substrates.
Date: 2016
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.nature.com/articles/ncomms11502 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms11502
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/ncomms11502
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().