Quantum annealing for the number-partitioning problem using a tunable spin glass of ions
Tobias Graß (),
David Raventós,
Bruno Juliá-Díaz,
Christian Gogolin and
Maciej Lewenstein
Additional contact information
Tobias Graß: ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology
David Raventós: ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology
Bruno Juliá-Díaz: ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology
Christian Gogolin: ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology
Maciej Lewenstein: ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology
Nature Communications, 2016, vol. 7, issue 1, 1-9
Abstract:
Abstract Exploiting quantum properties to outperform classical ways of information processing is an outstanding goal of modern physics. A promising route is quantum simulation, which aims at implementing relevant and computationally hard problems in controllable quantum systems. Here we demonstrate that in a trapped ion setup, with present day technology, it is possible to realize a spin model of the Mattis-type that exhibits spin glass phases. Our method produces the glassy behaviour without the need for any disorder potential, just by controlling the detuning of the spin-phonon coupling. Applying a transverse field, the system can be used to benchmark quantum annealing strategies which aim at reaching the ground state of the spin glass starting from the paramagnetic phase. In the vicinity of a phonon resonance, the problem maps onto number partitioning, and instances which are difficult to address classically can be implemented.
Date: 2016
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.nature.com/articles/ncomms11524 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms11524
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/ncomms11524
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().