EconPapers    
Economics at your fingertips  
 

Vascular control of the Drosophila haematopoietic microenvironment by Slit/Robo signalling

Ismaël Morin-Poulard, Anurag Sharma, Isabelle Louradour, Nathalie Vanzo, Alain Vincent and Michèle Crozatier ()
Additional contact information
Ismaël Morin-Poulard: Centre de Biologie du Développement, UMR 5547 CNRS/Université Toulouse III and Fédération de Recherche de Biologie de Toulouse
Anurag Sharma: Centre de Biologie du Développement, UMR 5547 CNRS/Université Toulouse III and Fédération de Recherche de Biologie de Toulouse
Isabelle Louradour: Centre de Biologie du Développement, UMR 5547 CNRS/Université Toulouse III and Fédération de Recherche de Biologie de Toulouse
Nathalie Vanzo: Centre de Biologie du Développement, UMR 5547 CNRS/Université Toulouse III and Fédération de Recherche de Biologie de Toulouse
Alain Vincent: Centre de Biologie du Développement, UMR 5547 CNRS/Université Toulouse III and Fédération de Recherche de Biologie de Toulouse
Michèle Crozatier: Centre de Biologie du Développement, UMR 5547 CNRS/Université Toulouse III and Fédération de Recherche de Biologie de Toulouse

Nature Communications, 2016, vol. 7, issue 1, 1-12

Abstract: Abstract Self-renewal and differentiation of mammalian haematopoietic stem cells (HSCs) are controlled by a specialized microenvironment called ‘the niche’. In the bone marrow, HSCs receive signals from both the endosteal and vascular niches. The posterior signalling centre (PSC) of the larval Drosophila haematopoietic organ, the lymph gland, regulates blood cell differentiation under normal conditions and also plays a key role in controlling haematopoiesis under immune challenge. Here we report that the Drosophila vascular system also contributes to the lymph gland homoeostasis. Vascular cells produce Slit that activates Robo receptors in the PSC. Robo activation controls proliferation and clustering of PSC cells by regulating Myc, and small GTPase and DE-cadherin activity, respectively. These findings reveal that signals from the vascular system contribute to regulating the rate of blood cell differentiation via the regulation of PSC morphology.

Date: 2016
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/ncomms11634 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms11634

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/ncomms11634

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms11634