EconPapers    
Economics at your fingertips  
 

Redox-freezing and nucleation of diamond via magnetite formation in the Earth’s mantle

Dorrit E. Jacob (), Sandra Piazolo, Anja Schreiber and Patrick Trimby
Additional contact information
Dorrit E. Jacob: Macquarie University
Sandra Piazolo: Macquarie University
Anja Schreiber: GeoForschungsZentrum Potsdam
Patrick Trimby: Australian Centre for Microscopy and Microanalysis, The University of Sydney

Nature Communications, 2016, vol. 7, issue 1, 1-7

Abstract: Abstract Diamonds and their inclusions are unique probes into the deep Earth, tracking the deep carbon cycle to >800 km. Understanding the mechanisms of carbon mobilization and freezing is a prerequisite for quantifying the fluxes of carbon in the deep Earth. Here we show direct evidence for the formation of diamond by redox reactions involving FeNi sulfides. Transmission Kikuchi Diffraction identifies an arrested redox reaction from pyrrhotite to magnetite included in diamond. The magnetite corona shows coherent epitaxy with relict pyrrhotite and diamond, indicating that diamond nucleated on magnetite. Furthermore, structures inherited from h-Fe3O4 define a phase transformation at depths of 320–330 km, the base of the Kaapvaal lithosphere. The oxidation of pyrrhotite to magnetite is an important trigger of diamond precipitation in the upper mantle, explaining the presence of these phases in diamonds.

Date: 2016
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.nature.com/articles/ncomms11891 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms11891

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/ncomms11891

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms11891