Laboratory analogue of a supersonic accretion column in a binary star system
J. E. Cross (),
G. Gregori (),
J. M. Foster,
P. Graham,
J. -M. Bonnet-Bidaud,
C. Busschaert,
N. Charpentier,
C. N. Danson,
H. W. Doyle,
R. P. Drake,
J. Fyrth,
E. T. Gumbrell,
M. Koenig,
C. Krauland,
C. C. Kuranz,
B. Loupias,
C. Michaut,
M. Mouchet,
S. Patankar,
J. Skidmore,
C. Spindloe,
E. R. Tubman,
N. Woolsey,
R. Yurchak and
É. Falize
Additional contact information
J. E. Cross: Clarendon Laboratory, University of Oxford
G. Gregori: Clarendon Laboratory, University of Oxford
J. M. Foster: Clarendon Laboratory, University of Oxford
P. Graham: AWE, Aldermaston
J. -M. Bonnet-Bidaud: Service d‘Astrophysique-Laboratoire AIM, CEA/DSM/Irfu
C. Busschaert: CEA-DAM-DIF
N. Charpentier: CEA-DAM-DIF
C. N. Danson: Clarendon Laboratory, University of Oxford
H. W. Doyle: Clarendon Laboratory, University of Oxford
R. P. Drake: Oceanic and Space Sciences, University of Michigan
J. Fyrth: AWE, Aldermaston
E. T. Gumbrell: AWE, Aldermaston
M. Koenig: LULI-CNRS, Ecole Polytechnique, CEA: Université Paris-Saclay
C. Krauland: Oceanic and Space Sciences, University of Michigan
C. C. Kuranz: Oceanic and Space Sciences, University of Michigan
B. Loupias: CEA-DAM-DIF
C. Michaut: LUTH, Observatoire de Paris, PSL Research University, CNRS, Université Paris Diderot, Sorbonne Paris Cité
M. Mouchet: LUTH, Observatoire de Paris, PSL Research University, CNRS, Université Paris Diderot, Sorbonne Paris Cité
S. Patankar: AWE, Aldermaston
J. Skidmore: AWE, Aldermaston
C. Spindloe: Target Fabrication Group, Central Laser Facility, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus
E. R. Tubman: York Plasma Institute, University of York
N. Woolsey: York Plasma Institute, University of York
R. Yurchak: LULI-CNRS, Ecole Polytechnique, CEA: Université Paris-Saclay
É. Falize: Service d‘Astrophysique-Laboratoire AIM, CEA/DSM/Irfu
Nature Communications, 2016, vol. 7, issue 1, 1-7
Abstract:
Abstract Astrophysical flows exhibit rich behaviour resulting from the interplay of different forms of energy—gravitational, thermal, magnetic and radiative. For magnetic cataclysmic variable stars, material from a late, main sequence star is pulled onto a highly magnetized (B>10 MG) white dwarf. The magnetic field is sufficiently large to direct the flow as an accretion column onto the poles of the white dwarf, a star subclass known as AM Herculis. A stationary radiative shock is expected to form 100–1,000 km above the surface of the white dwarf, far too small to be resolved with current telescopes. Here we report the results of a laboratory experiment showing the evolution of a reverse shock when both ionization and radiative losses are important. We find that the stand-off position of the shock agrees with radiation hydrodynamic simulations and is consistent, when scaled to AM Herculis star systems, with theoretical predictions.
Date: 2016
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/ncomms11899 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms11899
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/ncomms11899
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().