EconPapers    
Economics at your fingertips  
 

Coherent manipulation of a solid-state artificial atom with few photons

V. Giesz, N. Somaschi, G. Hornecker, T. Grange, B. Reznychenko, L. De Santis, J. Demory, C. Gomez, I. Sagnes, A. Lemaître, O. Krebs, N. D. Lanzillotti-Kimura, L. Lanco, A. Auffeves () and P. Senellart ()
Additional contact information
V. Giesz: CNRS-LPN Laboratoire de Photonique et de Nanostructures, Université Paris-Saclay
N. Somaschi: CNRS-LPN Laboratoire de Photonique et de Nanostructures, Université Paris-Saclay
G. Hornecker: Université Grenoble Alpes
T. Grange: Université Grenoble Alpes
B. Reznychenko: Université Grenoble Alpes
L. De Santis: CNRS-LPN Laboratoire de Photonique et de Nanostructures, Université Paris-Saclay
J. Demory: CNRS-LPN Laboratoire de Photonique et de Nanostructures, Université Paris-Saclay
C. Gomez: CNRS-LPN Laboratoire de Photonique et de Nanostructures, Université Paris-Saclay
I. Sagnes: CNRS-LPN Laboratoire de Photonique et de Nanostructures, Université Paris-Saclay
A. Lemaître: CNRS-LPN Laboratoire de Photonique et de Nanostructures, Université Paris-Saclay
O. Krebs: CNRS-LPN Laboratoire de Photonique et de Nanostructures, Université Paris-Saclay
N. D. Lanzillotti-Kimura: CNRS-LPN Laboratoire de Photonique et de Nanostructures, Université Paris-Saclay
L. Lanco: CNRS-LPN Laboratoire de Photonique et de Nanostructures, Université Paris-Saclay
A. Auffeves: Université Grenoble Alpes
P. Senellart: CNRS-LPN Laboratoire de Photonique et de Nanostructures, Université Paris-Saclay

Nature Communications, 2016, vol. 7, issue 1, 1-6

Abstract: Abstract In a quantum network based on atoms and photons, a single atom should control the photon state and, reciprocally, a single photon should allow the coherent manipulation of the atom. Both operations require controlling the atom environment and developing efficient atom–photon interfaces, for instance by coupling the natural or artificial atom to cavities. So far, much attention has been drown on manipulating the light field with atomic transitions, recently at the few-photon limit. Here we report on the reciprocal operation and demonstrate the coherent manipulation of an artificial atom by few photons. We study a quantum dot-cavity system with a record cooperativity of 13. Incident photons interact with the atom with probability 0.95, which radiates back in the cavity mode with probability 0.96. Inversion of the atomic transition is achieved for 3.8 photons on average, showing that our artificial atom performs as if fully isolated from the solid-state environment.

Date: 2016
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/ncomms11986 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms11986

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/ncomms11986

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms11986