Interferometric measurements of many-body topological invariants using mobile impurities
F. Grusdt (),
N. Y. Yao,
D. Abanin,
M. Fleischhauer and
E. Demler
Additional contact information
F. Grusdt: University of Kaiserslautern
N. Y. Yao: University of California
D. Abanin: University of Geneva
M. Fleischhauer: University of Kaiserslautern
E. Demler: Harvard University
Nature Communications, 2016, vol. 7, issue 1, 1-9
Abstract:
Abstract Topological quantum phases cannot be characterized by Ginzburg–Landau type order parameters, and are instead described by non-local topological invariants. Experimental platforms capable of realizing such exotic states now include synthetic many-body systems such as ultracold atoms or photons. Unique tools available in these systems enable a new characterization of strongly correlated many-body states. Here we propose a general scheme for detecting topological order using interferometric measurements of elementary excitations. The key ingredient is the use of mobile impurities that bind to quasiparticles of a host many-body system. Specifically, we show how fractional charges can be probed in the bulk of fractional quantum Hall systems. We demonstrate that combining Ramsey interference with Bloch oscillations can be used to measure Chern numbers characterizing the dispersion of individual quasiparticles, which gives a direct probe of their fractional charges. Possible extensions of our method to other many-body systems, such as spin liquids, are conceivable.
Date: 2016
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.nature.com/articles/ncomms11994 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms11994
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/ncomms11994
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().