EconPapers    
Economics at your fingertips  
 

Multiple sulfur isotope evidence for massive oceanic sulfate depletion in the aftermath of Snowball Earth

Pierre Sansjofre (), Pierre Cartigny, Ricardo I. F. Trindade, Afonso C. R. Nogueira, Pierre Agrinier and Magali Ader
Additional contact information
Pierre Sansjofre: Équipe de géochimie des isotopes stables, Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Univ Paris Diderot
Pierre Cartigny: Équipe de géochimie des isotopes stables, Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Univ Paris Diderot
Ricardo I. F. Trindade: Instituto de Astronomia, Geofísica e Ciências Atmosféricas
Afonso C. R. Nogueira: Faculdade de Geologia, Instituto de Geociências
Pierre Agrinier: Équipe de géochimie des isotopes stables, Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Univ Paris Diderot
Magali Ader: Équipe de géochimie des isotopes stables, Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Univ Paris Diderot

Nature Communications, 2016, vol. 7, issue 1, 1-8

Abstract: Abstract The terminal Neoproterozoic Era (850–542 Ma) is characterized by the most pronounced positive sulfur isotope (34S/32S) excursions in Earth’s history, with strong variability and maximum values averaging δ34S∼+38‰. These excursions have been mostly interpreted in the framework of steady-state models, in which ocean sulfate concentrations do not fluctuate (that is, sulfate input equals sulfate output). Such models imply a large pyrite burial increase together with a dramatic fluctuation in the isotope composition of marine sulfate inputs, and/or a change in microbial sulfur metabolisms. Here, using multiple sulfur isotopes (33S/32S, 34S/32S and 36S/32S ratios) of carbonate-associated sulfate, we demonstrate that the steady-state assumption does not hold in the aftermath of the Marinoan Snowball Earth glaciation. The data attest instead to the most impressive event of oceanic sulfate drawdown in Earth’s history, driven by an increased pyrite burial, which may have contributed to the Neoproterozoic oxygenation of the oceans and atmosphere.

Date: 2016
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/ncomms12192 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms12192

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/ncomms12192

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms12192