The origin of incipient ferroelectricity in lead telluride
M. P. Jiang (),
M. Trigo,
I. Savić,
S. Fahy,
É. D. Murray,
C. Bray,
J. Clark,
T. Henighan,
M. Kozina,
M. Chollet,
J. M. Glownia,
M. C. Hoffmann,
D. Zhu,
O. Delaire,
A. F. May,
B. C. Sales,
A. M. Lindenberg,
P. Zalden,
T. Sato,
R. Merlin and
D. A. Reis ()
Additional contact information
M. P. Jiang: Stanford PULSE Institute, SLAC National Accelerator Laboratory
M. Trigo: Stanford PULSE Institute, SLAC National Accelerator Laboratory
I. Savić: Tyndall National Institute, Lee Maltings Complex, Dyke Parade
S. Fahy: Tyndall National Institute, Lee Maltings Complex, Dyke Parade
É. D. Murray: Tyndall National Institute, Lee Maltings Complex, Dyke Parade
C. Bray: Stanford PULSE Institute, SLAC National Accelerator Laboratory
J. Clark: Stanford PULSE Institute, SLAC National Accelerator Laboratory
T. Henighan: Stanford PULSE Institute, SLAC National Accelerator Laboratory
M. Kozina: Stanford PULSE Institute, SLAC National Accelerator Laboratory
M. Chollet: Linac Coherent Light Source, SLAC National Accelerator Laboratory
J. M. Glownia: Linac Coherent Light Source, SLAC National Accelerator Laboratory
M. C. Hoffmann: Linac Coherent Light Source, SLAC National Accelerator Laboratory
D. Zhu: Linac Coherent Light Source, SLAC National Accelerator Laboratory
O. Delaire: Duke University
A. F. May: Oak Ridge National Laboratory
B. C. Sales: Oak Ridge National Laboratory
A. M. Lindenberg: Stanford PULSE Institute, SLAC National Accelerator Laboratory
P. Zalden: Stanford PULSE Institute, SLAC National Accelerator Laboratory
T. Sato: RIKEN SPring-8 Center
R. Merlin: University of Michigan
D. A. Reis: Stanford PULSE Institute, SLAC National Accelerator Laboratory
Nature Communications, 2016, vol. 7, issue 1, 1-9
Abstract:
Abstract The interactions between electrons and lattice vibrations are fundamental to materials behaviour. In the case of group IV–VI, V and related materials, these interactions are strong, and the materials exist near electronic and structural phase transitions. The prototypical example is PbTe whose incipient ferroelectric behaviour has been recently associated with large phonon anharmonicity and thermoelectricity. Here we show that it is primarily electron-phonon coupling involving electron states near the band edges that leads to the ferroelectric instability in PbTe. Using a combination of nonequilibrium lattice dynamics measurements and first principles calculations, we find that photoexcitation reduces the Peierls-like electronic instability and reinforces the paraelectric state. This weakens the long-range forces along the cubic direction tied to resonant bonding and low lattice thermal conductivity. Our results demonstrate how free-electron-laser-based ultrafast X-ray scattering can be utilized to shed light on the microscopic mechanisms that determine materials properties.
Date: 2016
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.nature.com/articles/ncomms12291 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms12291
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/ncomms12291
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().