EconPapers    
Economics at your fingertips  
 

Lipidic cubic phase injector is a viable crystal delivery system for time-resolved serial crystallography

Przemyslaw Nogly, Valerie Panneels, Garrett Nelson, Cornelius Gati, Tetsunari Kimura, Christopher Milne, Despina Milathianaki, Minoru Kubo, Wenting Wu, Chelsie Conrad, Jesse Coe, Richard Bean, Yun Zhao, Petra Båth, Robert Dods, Rajiv Harimoorthy, Kenneth R. Beyerlein, Jan Rheinberger, Daniel James, Daniel DePonte, Chufeng Li, Leonardo Sala, Garth J. Williams, Mark S. Hunter, Jason E. Koglin, Peter Berntsen, Eriko Nango, So Iwata, Henry N. Chapman, Petra Fromme, Matthias Frank, Rafael Abela, Sébastien Boutet, Anton Barty, Thomas A. White, Uwe Weierstall, John Spence, Richard Neutze, Gebhard Schertler and Jörg Standfuss ()
Additional contact information
Przemyslaw Nogly: Laboratory for Biomolecular Research, Paul Scherrer Institute
Valerie Panneels: Laboratory for Biomolecular Research, Paul Scherrer Institute
Garrett Nelson: Arizona State University
Cornelius Gati: Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY
Tetsunari Kimura: Biometal Science Laboratory, RIKEN SPring-8 Center
Christopher Milne: SwissFEL, Paul Scherrer Institute
Despina Milathianaki: Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory
Minoru Kubo: Biometal Science Laboratory, RIKEN SPring-8 Center
Wenting Wu: Laboratory for Biomolecular Research, Paul Scherrer Institute
Chelsie Conrad: and Center for Applied Structural Discovery, Biodesign Institute, Arizona State University
Jesse Coe: and Center for Applied Structural Discovery, Biodesign Institute, Arizona State University
Richard Bean: Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY
Yun Zhao: Arizona State University
Petra Båth: University of Gothenburg
Robert Dods: University of Gothenburg
Rajiv Harimoorthy: University of Gothenburg
Kenneth R. Beyerlein: Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY
Jan Rheinberger: Laboratory for Biomolecular Research, Paul Scherrer Institute
Daniel James: Laboratory for Biomolecular Research, Paul Scherrer Institute
Daniel DePonte: Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory
Chufeng Li: Arizona State University
Leonardo Sala: SwissFEL, Paul Scherrer Institute
Garth J. Williams: Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory
Mark S. Hunter: Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory
Jason E. Koglin: Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory
Peter Berntsen: University of Gothenburg
Eriko Nango: SACLA Science Research Group, RIKEN/SPring-8 Center
So Iwata: SACLA Science Research Group, RIKEN/SPring-8 Center
Henry N. Chapman: Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY
Petra Fromme: and Center for Applied Structural Discovery, Biodesign Institute, Arizona State University
Matthias Frank: Lawrence Livermore National Laboratory
Rafael Abela: SwissFEL, Paul Scherrer Institute
Sébastien Boutet: Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory
Anton Barty: Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY
Thomas A. White: Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY
Uwe Weierstall: Arizona State University
John Spence: Arizona State University
Richard Neutze: University of Gothenburg
Gebhard Schertler: Laboratory for Biomolecular Research, Paul Scherrer Institute
Jörg Standfuss: Laboratory for Biomolecular Research, Paul Scherrer Institute

Nature Communications, 2016, vol. 7, issue 1, 1-9

Abstract: Abstract Serial femtosecond crystallography (SFX) using X-ray free-electron laser sources is an emerging method with considerable potential for time-resolved pump-probe experiments. Here we present a lipidic cubic phase SFX structure of the light-driven proton pump bacteriorhodopsin (bR) to 2.3 Å resolution and a method to investigate protein dynamics with modest sample requirement. Time-resolved SFX (TR-SFX) with a pump-probe delay of 1 ms yields difference Fourier maps compatible with the dark to M state transition of bR. Importantly, the method is very sample efficient and reduces sample consumption to about 1 mg per collected time point. Accumulation of M intermediate within the crystal lattice is confirmed by time-resolved visible absorption spectroscopy. This study provides an important step towards characterizing the complete photocycle dynamics of retinal proteins and demonstrates the feasibility of a sample efficient viscous medium jet for TR-SFX.

Date: 2016
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.nature.com/articles/ncomms12314 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms12314

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/ncomms12314

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms12314