Enhanced spin–orbit coupling in core/shell nanowires
Stephan Furthmeier,
Florian Dirnberger,
Martin Gmitra,
Andreas Bayer,
Moritz Forsch,
Joachim Hubmann,
Christian Schüller,
Elisabeth Reiger,
Jaroslav Fabian,
Tobias Korn and
Dominique Bougeard ()
Additional contact information
Stephan Furthmeier: Institut für Experimentelle und Angewandte Physik, Universität Regensburg
Florian Dirnberger: Institut für Experimentelle und Angewandte Physik, Universität Regensburg
Martin Gmitra: Institut für Theoretische Physik, Universität Regensburg
Andreas Bayer: Institut für Experimentelle und Angewandte Physik, Universität Regensburg
Moritz Forsch: Institut für Experimentelle und Angewandte Physik, Universität Regensburg
Joachim Hubmann: Institut für Experimentelle und Angewandte Physik, Universität Regensburg
Christian Schüller: Institut für Experimentelle und Angewandte Physik, Universität Regensburg
Elisabeth Reiger: Institut für Experimentelle und Angewandte Physik, Universität Regensburg
Jaroslav Fabian: Institut für Theoretische Physik, Universität Regensburg
Tobias Korn: Institut für Experimentelle und Angewandte Physik, Universität Regensburg
Dominique Bougeard: Institut für Experimentelle und Angewandte Physik, Universität Regensburg
Nature Communications, 2016, vol. 7, issue 1, 1-7
Abstract:
Abstract The spin–orbit coupling (SOC) in semiconductors is strongly influenced by structural asymmetries, as prominently observed in bulk crystal structures that lack inversion symmetry. Here we study an additional effect on the SOC: the asymmetry induced by the large interface area between a nanowire core and its surrounding shell. Our experiments on purely wurtzite GaAs/AlGaAs core/shell nanowires demonstrate optical spin injection into a single free-standing nanowire and determine the effective electron g-factor of the hexagonal GaAs wurtzite phase. The spin relaxation is highly anisotropic in time-resolved micro-photoluminescence measurements on single nanowires, showing a significant increase of spin relaxation in external magnetic fields. This behaviour is counterintuitive compared with bulk wurtzite crystals. We present a model for the observed electron spin dynamics highlighting the dominant role of the interface-induced SOC in these core/shell nanowires. This enhanced SOC may represent an interesting tuning parameter for the implementation of spin–orbitronic concepts in semiconductor-based structures.
Date: 2016
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/ncomms12413 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms12413
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/ncomms12413
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().