Temperature-driven massless Kane fermions in HgCdTe crystals
F. Teppe (),
M. Marcinkiewicz,
S. S. Krishtopenko,
S. Ruffenach,
C. Consejo,
A. M. Kadykov,
W. Desrat,
D. But,
W. Knap,
J. Ludwig,
S. Moon,
D. Smirnov,
M. Orlita,
Z. Jiang,
S. V. Morozov,
V.I. Gavrilenko,
N. N. Mikhailov and
S. A. Dvoretskii
Additional contact information
F. Teppe: Laboratoire Charles Coulomb, UMR CNRS 5221, University of Montpellier
M. Marcinkiewicz: Laboratoire Charles Coulomb, UMR CNRS 5221, University of Montpellier
S. S. Krishtopenko: Laboratoire Charles Coulomb, UMR CNRS 5221, University of Montpellier
S. Ruffenach: Laboratoire Charles Coulomb, UMR CNRS 5221, University of Montpellier
C. Consejo: Laboratoire Charles Coulomb, UMR CNRS 5221, University of Montpellier
A. M. Kadykov: Laboratoire Charles Coulomb, UMR CNRS 5221, University of Montpellier
W. Desrat: Laboratoire Charles Coulomb, UMR CNRS 5221, University of Montpellier
D. But: Laboratoire Charles Coulomb, UMR CNRS 5221, University of Montpellier
W. Knap: Laboratoire Charles Coulomb, UMR CNRS 5221, University of Montpellier
J. Ludwig: National High Magnetic Field Laboratory
S. Moon: National High Magnetic Field Laboratory
D. Smirnov: National High Magnetic Field Laboratory
M. Orlita: Laboratoire National des Champs Magnétiques Intenses, CNRS-UJF-UPS-INSA
Z. Jiang: School of Physics, Georgia Institute of Technology
S. V. Morozov: Institute for Physics of Microstructures, Russian Academy of Sciences
V.I. Gavrilenko: Institute for Physics of Microstructures, Russian Academy of Sciences
N. N. Mikhailov: Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences
S. A. Dvoretskii: Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences
Nature Communications, 2016, vol. 7, issue 1, 1-6
Abstract:
Abstract It has recently been shown that electronic states in bulk gapless HgCdTe offer another realization of pseudo-relativistic three-dimensional particles in condensed matter systems. These single valley relativistic states, massless Kane fermions, cannot be described by any other relativistic particles. Furthermore, the HgCdTe band structure can be continuously tailored by modifying cadmium content or temperature. At critical concentration or temperature, the bandgap collapses as the system undergoes a semimetal-to-semiconductor topological phase transition between the inverted and normal alignments. Here, using far-infrared magneto-spectroscopy we explore the continuous evolution of band structure of bulk HgCdTe as temperature is tuned across the topological phase transition. We demonstrate that the rest mass of Kane fermions changes sign at critical temperature, whereas their velocity remains constant. The velocity universal value of (1.07±0.05) × 106 m s−1 remains valid in a broad range of temperatures and Cd concentrations, indicating a striking universality of the pseudo-relativistic description of the Kane fermions in HgCdTe.
Date: 2016
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/ncomms12576 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms12576
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/ncomms12576
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().