EconPapers    
Economics at your fingertips  
 

Principal cell activity induces spine relocation of adult-born interneurons in the olfactory bulb

Vincent Breton-Provencher, Karen Bakhshetyan, Delphine Hardy, Rodrigo Roberto Bammann, Francesco Cavarretta, Marina Snapyan, Daniel Côté, Michele Migliore and Armen Saghatelyan ()
Additional contact information
Vincent Breton-Provencher: Cellular Neurobiology Unit,Institut Universitaire en santé mentale de Québec
Karen Bakhshetyan: Cellular Neurobiology Unit,Institut Universitaire en santé mentale de Québec
Delphine Hardy: Cellular Neurobiology Unit,Institut Universitaire en santé mentale de Québec
Rodrigo Roberto Bammann: Cellular Neurobiology Unit,Institut Universitaire en santé mentale de Québec
Francesco Cavarretta: University of Milan
Marina Snapyan: Cellular Neurobiology Unit,Institut Universitaire en santé mentale de Québec
Daniel Côté: Cellular Neurobiology Unit,Institut Universitaire en santé mentale de Québec
Michele Migliore: University of Milan
Armen Saghatelyan: Cellular Neurobiology Unit,Institut Universitaire en santé mentale de Québec

Nature Communications, 2016, vol. 7, issue 1, 1-16

Abstract: Abstract Adult-born neurons adjust olfactory bulb (OB) network functioning in response to changing environmental conditions by the formation, retraction and/or stabilization of new synaptic contacts. While some changes in the odour environment are rapid, the synaptogenesis of adult-born neurons occurs over a longer time scale. It remains unknown how the bulbar network functions when rapid and persistent changes in environmental conditions occur but when new synapses have not been formed. Here we reveal a new form of structural remodelling where mature spines of adult-born but not early-born neurons relocate in an activity-dependent manner. Principal cell activity induces directional growth of spine head filopodia (SHF) followed by spine relocation. Principal cell-derived glutamate and BDNF regulate SHF motility and directional spine relocation, respectively; and spines with SHF are selectively preserved following sensory deprivation. Our three-dimensional model suggests that spine relocation allows fast reorganization of OB network with functional consequences for odour information processing.

Date: 2016
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/ncomms12659 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms12659

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/ncomms12659

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms12659