Trion fine structure and coupled spin–valley dynamics in monolayer tungsten disulfide
Gerd Plechinger,
Philipp Nagler,
Ashish Arora,
Robert Schmidt,
Alexey Chernikov,
Andrés Granados del Águila,
Peter C.M. Christianen,
Rudolf Bratschitsch,
Christian Schüller and
Tobias Korn ()
Additional contact information
Gerd Plechinger: Institut für Experimentelle und Angewandte Physik, Universität Regensburg
Philipp Nagler: Institut für Experimentelle und Angewandte Physik, Universität Regensburg
Ashish Arora: Physikalisches Institut, Westfälische Wilhelms-Universität Münster
Robert Schmidt: Physikalisches Institut, Westfälische Wilhelms-Universität Münster
Alexey Chernikov: Institut für Experimentelle und Angewandte Physik, Universität Regensburg
Andrés Granados del Águila: High Field Magnet Laboratory (HFML—EMFL), Radboud University
Peter C.M. Christianen: High Field Magnet Laboratory (HFML—EMFL), Radboud University
Rudolf Bratschitsch: Physikalisches Institut, Westfälische Wilhelms-Universität Münster
Christian Schüller: Institut für Experimentelle und Angewandte Physik, Universität Regensburg
Tobias Korn: Institut für Experimentelle und Angewandte Physik, Universität Regensburg
Nature Communications, 2016, vol. 7, issue 1, 1-9
Abstract:
Abstract Monolayer transition-metal dichalcogenides have recently emerged as possible candidates for valleytronic applications, as the spin and valley pseudospin are directly coupled and stabilized by a large spin splitting. The optical properties of these two-dimensional crystals are dominated by tightly bound electron–hole pairs (excitons) and more complex quasiparticles such as charged excitons (trions). Here we investigate monolayer WS2 samples via photoluminescence and time-resolved Kerr rotation. In photoluminescence and in energy-dependent Kerr rotation measurements, we are able to resolve two different trion states, which we interpret as intravalley and intervalley trions. Using time-resolved Kerr rotation, we observe a rapid initial valley polarization decay for the A exciton and the trion states. Subsequently, we observe a crossover towards exciton–exciton interaction-related dynamics, consistent with the formation and decay of optically dark A excitons. By contrast, resonant excitation of the B exciton transition leads to a very slow decay of the Kerr signal.
Date: 2016
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/ncomms12715 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms12715
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/ncomms12715
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().