EconPapers    
Economics at your fingertips  
 

Self-amplified photo-induced gap quenching in a correlated electron material

S. Mathias (), S. Eich, J. Urbancic, S. Michael, A. V. Carr, S. Emmerich, A. Stange, T. Popmintchev, T. Rohwer, M. Wiesenmayer, A. Ruffing, S. Jakobs, S. Hellmann, P. Matyba, C. Chen, L. Kipp, M. Bauer, H. C. Kapteyn, H. C. Schneider, K. Rossnagel, M. M. Murnane and M. Aeschlimann
Additional contact information
S. Mathias: I. Physikalisches Institut, Georg-August-Universität Göttingen
S. Eich: University of Kaiserslautern
J. Urbancic: University of Kaiserslautern
S. Michael: University of Kaiserslautern
A. V. Carr: JILA, University of Colorado and NIST
S. Emmerich: University of Kaiserslautern
A. Stange: Institute of Experimental and Applied Physics, University of Kiel
T. Popmintchev: JILA, University of Colorado and NIST
T. Rohwer: Massachusetts Institute of Technology, Cambridge
M. Wiesenmayer: University of Kaiserslautern
A. Ruffing: University of Kaiserslautern
S. Jakobs: University of Kaiserslautern
S. Hellmann: Institute of Experimental and Applied Physics, University of Kiel
P. Matyba: JILA, University of Colorado and NIST
C. Chen: JILA, University of Colorado and NIST
L. Kipp: Institute of Experimental and Applied Physics, University of Kiel
M. Bauer: Institute of Experimental and Applied Physics, University of Kiel
H. C. Kapteyn: JILA, University of Colorado and NIST
H. C. Schneider: University of Kaiserslautern
K. Rossnagel: Institute of Experimental and Applied Physics, University of Kiel
M. M. Murnane: JILA, University of Colorado and NIST
M. Aeschlimann: University of Kaiserslautern

Nature Communications, 2016, vol. 7, issue 1, 1-8

Abstract: Abstract Capturing the dynamic electronic band structure of a correlated material presents a powerful capability for uncovering the complex couplings between the electronic and structural degrees of freedom. When combined with ultrafast laser excitation, new phases of matter can result, since far-from-equilibrium excited states are instantaneously populated. Here, we elucidate a general relation between ultrafast non-equilibrium electron dynamics and the size of the characteristic energy gap in a correlated electron material. We show that carrier multiplication via impact ionization can be one of the most important processes in a gapped material, and that the speed of carrier multiplication critically depends on the size of the energy gap. In the case of the charge-density wave material 1T-TiSe2, our data indicate that carrier multiplication and gap dynamics mutually amplify each other, which explains—on a microscopic level—the extremely fast response of this material to ultrafast optical excitation.

Date: 2016
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/ncomms12902 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms12902

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/ncomms12902

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms12902