Sensing the quantum limit in scanning tunnelling spectroscopy
Christian R. Ast (),
Berthold Jäck,
Jacob Senkpiel,
Matthias Eltschka,
Markus Etzkorn,
Joachim Ankerhold and
Klaus Kern
Additional contact information
Christian R. Ast: Max-Planck-Institut für Festkörperforschung
Berthold Jäck: Max-Planck-Institut für Festkörperforschung
Jacob Senkpiel: Max-Planck-Institut für Festkörperforschung
Matthias Eltschka: Max-Planck-Institut für Festkörperforschung
Markus Etzkorn: Max-Planck-Institut für Festkörperforschung
Joachim Ankerhold: Institut für Komplexe Quantensysteme and IQST, Universität Ulm
Klaus Kern: Max-Planck-Institut für Festkörperforschung
Nature Communications, 2016, vol. 7, issue 1, 1-8
Abstract:
Abstract The tunnelling current in scanning tunnelling spectroscopy (STS) is typically and often implicitly modelled by a continuous and homogeneous charge flow. If the charging energy of a single-charge quantum sufficiently exceeds the thermal energy, however, the granularity of the current becomes non-negligible. In this quantum limit, the capacitance of the tunnel junction mediates an interaction of the tunnelling electrons with the surrounding electromagnetic environment and becomes a source of noise itself, which cannot be neglected in STS. Using a scanning tunnelling microscope operating at 15 mK, we show that we operate in this quantum limit, which determines the ultimate energy resolution in STS. The P(E)-theory describes the probability for a tunnelling electron to exchange energy with the environment and can be regarded as the energy resolution function. We experimentally demonstrate this effect with a superconducting aluminium tip and a superconducting aluminium sample, where it is most pronounced.
Date: 2016
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/ncomms13009 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms13009
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/ncomms13009
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().