Single-shot observation of optical rogue waves in integrable turbulence using time microscopy
Pierre Suret (),
Rebecca El Koussaifi,
Alexey Tikan,
Clément Evain,
Stéphane Randoux,
Christophe Szwaj and
Serge Bielawski
Additional contact information
Pierre Suret: Laboratoire de Physique des Lasers, Atomes et Molecules, UMR-CNRS 8523, Université de Lille
Rebecca El Koussaifi: Laboratoire de Physique des Lasers, Atomes et Molecules, UMR-CNRS 8523, Université de Lille
Alexey Tikan: Laboratoire de Physique des Lasers, Atomes et Molecules, UMR-CNRS 8523, Université de Lille
Clément Evain: Laboratoire de Physique des Lasers, Atomes et Molecules, UMR-CNRS 8523, Université de Lille
Stéphane Randoux: Laboratoire de Physique des Lasers, Atomes et Molecules, UMR-CNRS 8523, Université de Lille
Christophe Szwaj: Laboratoire de Physique des Lasers, Atomes et Molecules, UMR-CNRS 8523, Université de Lille
Serge Bielawski: Laboratoire de Physique des Lasers, Atomes et Molecules, UMR-CNRS 8523, Université de Lille
Nature Communications, 2016, vol. 7, issue 1, 1-8
Abstract:
Abstract Optical fibres are favourable tabletop laboratories to investigate both coherent and incoherent nonlinear waves. In particular, exact solutions of the one-dimensional nonlinear Schrödinger equation such as fundamental solitons or solitons on finite background can be generated by launching periodic, specifically designed coherent waves in optical fibres. It is an open fundamental question to know whether these coherent structures can emerge from the nonlinear propagation of random waves. However the typical sub-picosecond timescale prevented—up to now—time-resolved observations of the awaited dynamics. Here, we report temporal ‘snapshots’ of random light using a specially designed ‘time-microscope’. Ultrafast structures having peak powers much larger than the average optical power are generated from the propagation of partially coherent waves in optical fibre and are recorded with 250 femtoseconds resolution. Our experiment demonstrates the central role played by ‘breather-like’ structures such as the Peregrine soliton in the emergence of heavy-tailed statistics in integrable turbulence.
Date: 2016
References: Add references at CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
https://www.nature.com/articles/ncomms13136 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms13136
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/ncomms13136
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().