Striped nanoscale phase separation at the metal–insulator transition of heteroepitaxial nickelates
G. Mattoni (),
P. Zubko,
F. Maccherozzi,
A.J.H. van der Torren,
D. B. Boltje,
M. Hadjimichael,
N. Manca,
S. Catalano,
M. Gibert,
Y. Liu,
J. Aarts,
J.-M. Triscone,
S. S. Dhesi and
A. D. Caviglia ()
Additional contact information
G. Mattoni: Kavli Institute of Nanoscience, Delft University of Technology
P. Zubko: University College London
F. Maccherozzi: Diamond Light Source, Harwell Science and Innovation Campus
A.J.H. van der Torren: Kamerlingh Onnes-Huygens Laboratory, Leiden University
D. B. Boltje: Kamerlingh Onnes-Huygens Laboratory, Leiden University
M. Hadjimichael: University College London
N. Manca: Kavli Institute of Nanoscience, Delft University of Technology
S. Catalano: University of Geneva, 24 Quai Ernest-Ansermet
M. Gibert: University of Geneva, 24 Quai Ernest-Ansermet
Y. Liu: Diamond Light Source, Harwell Science and Innovation Campus
J. Aarts: Kamerlingh Onnes-Huygens Laboratory, Leiden University
J.-M. Triscone: University of Geneva, 24 Quai Ernest-Ansermet
S. S. Dhesi: Diamond Light Source, Harwell Science and Innovation Campus
A. D. Caviglia: Kavli Institute of Nanoscience, Delft University of Technology
Nature Communications, 2016, vol. 7, issue 1, 1-7
Abstract:
Abstract Nucleation processes of mixed-phase states are an intrinsic characteristic of first-order phase transitions, typically related to local symmetry breaking. Direct observation of emerging mixed-phase regions in materials showing a first-order metal–insulator transition (MIT) offers unique opportunities to uncover their driving mechanism. Using photoemission electron microscopy, we image the nanoscale formation and growth of insulating domains across the temperature-driven MIT in NdNiO3 epitaxial thin films. Heteroepitaxy is found to strongly determine the nanoscale nature of the phase transition, inducing preferential formation of striped domains along the terraces of atomically flat stepped surfaces. We show that the distribution of transition temperatures is a local property, set by surface morphology and stable across multiple temperature cycles. Our data provide new insights into the MIT of heteroepitaxial nickelates and point to a rich, nanoscale phenomenology in this strongly correlated material.
Date: 2016
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/ncomms13141 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms13141
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/ncomms13141
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().