EconPapers    
Economics at your fingertips  
 

Mixed functional microarchitectures for orientation selectivity in the mouse primary visual cortex

Satoru Kondo, Takashi Yoshida and Kenichi Ohki ()
Additional contact information
Satoru Kondo: Graduate School of Medical Sciences, Kyushu University
Takashi Yoshida: Graduate School of Medical Sciences, Kyushu University
Kenichi Ohki: Graduate School of Medical Sciences, Kyushu University

Nature Communications, 2016, vol. 7, issue 1, 1-16

Abstract: Abstract A minicolumn is the smallest anatomical module in the cortical architecture, but it is still in debate whether it serves as functional units for cortical processing. In the rodent primary visual cortex (V1), neurons with different preferred orientations are mixed horizontally in a salt and pepper manner, but vertical functional organization was not examined. In this study, we found that neurons with similar orientation preference are weakly but significantly clustered vertically in a short length and horizontally in the scale of a minicolumn. Interestingly, the vertical clustering is found only in a part of minicolumns, and others are composed of neurons with a variety of orientation preferences. Thus, the mouse V1 is a mixture of vertical clusters of neurons with various degrees of orientation similarity, which may be the compromise between the brain size and keeping the vertical clusters of similarly tuned neurons at least in a subset of clusters.

Date: 2016
References: Add references at CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
https://www.nature.com/articles/ncomms13210 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms13210

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/ncomms13210

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms13210