An enduring rapidly moving storm as a guide to Saturn’s Equatorial jet’s complex structure
A. Sánchez-Lavega (),
E. García-Melendo,
S. Pérez-Hoyos,
R. Hueso,
M. H. Wong,
A. Simon,
J. F. Sanz-Requena,
A. Antuñano,
N. Barrado-Izagirre,
I. Garate-Lopez,
J. F. Rojas,
T. del Río-Gaztelurrutia,
J. M. Gómez-Forrellad,
I. de Pater,
L. Li and
T. Barry
Additional contact information
A. Sánchez-Lavega: Universidad del País Vasco UPV/EHU, Escuela de Ingeniería de Bilbao
E. García-Melendo: Universidad del País Vasco UPV/EHU, Escuela de Ingeniería de Bilbao
S. Pérez-Hoyos: Universidad del País Vasco UPV/EHU, Escuela de Ingeniería de Bilbao
R. Hueso: Universidad del País Vasco UPV/EHU, Escuela de Ingeniería de Bilbao
M. H. Wong: University of California
A. Simon: NASA Goddard Space Flight Center/690
J. F. Sanz-Requena: Universidad Europea Miguel de Cervantes
A. Antuñano: Universidad del País Vasco UPV/EHU, Escuela de Ingeniería de Bilbao
N. Barrado-Izagirre: Universidad del País Vasco UPV/EHU, Escuela de Ingeniería de Bilbao
I. Garate-Lopez: Universidad del País Vasco UPV/EHU, Escuela de Ingeniería de Bilbao
J. F. Rojas: Universidad del País Vasco UPV/EHU, Escuela de Ingeniería de Bilbao
T. del Río-Gaztelurrutia: Universidad del País Vasco UPV/EHU, Escuela de Ingeniería de Bilbao
J. M. Gómez-Forrellad: Fundació Observatori Esteve Duran, c/ Montseny
I. de Pater: University of California
L. Li: University of Houston
T. Barry: Broken Hill Observatory
Nature Communications, 2016, vol. 7, issue 1, 1-10
Abstract:
Abstract Saturn has an intense and broad eastward equatorial jet with a complex three-dimensional structure mixed with time variability. The equatorial region experiences strong seasonal insolation variations enhanced by ring shadowing, and three of the six known giant planetary-scale storms have developed in it. These factors make Saturn’s equator a natural laboratory to test models of jets in giant planets. Here we report on a bright equatorial atmospheric feature imaged in 2015 that moved steadily at a high speed of 450 ms−1 not measured since 1980–1981 with other equatorial clouds moving within an ample range of velocities. Radiative transfer models show that these motions occur at three altitude levels within the upper haze and clouds. We find that the peak of the jet (latitudes 10° N to 10° S) suffers intense vertical shears reaching +2.5 ms−1 km−1, two orders of magnitude higher than meridional shears, and temporal variability above 1 bar altitude level.
Date: 2016
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/ncomms13262 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms13262
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/ncomms13262
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().