Excitonic linewidth and coherence lifetime in monolayer transition metal dichalcogenides
Malte Selig (),
Gunnar Berghäuser,
Archana Raja,
Philipp Nagler,
Christian Schüller,
Tony F. Heinz,
Tobias Korn,
Alexey Chernikov,
Ermin Malic and
Andreas Knorr
Additional contact information
Malte Selig: Institut für Theoretische Physik, Nichtlineare Optik und Quantenelektronik, Technische Universität Berlin
Gunnar Berghäuser: Institut für Theoretische Physik, Nichtlineare Optik und Quantenelektronik, Technische Universität Berlin
Archana Raja: Columbia University
Philipp Nagler: Institut für Experimentelle und Angewandte Physik, Universität Regensburg
Christian Schüller: Institut für Experimentelle und Angewandte Physik, Universität Regensburg
Tony F. Heinz: Stanford University
Tobias Korn: Institut für Experimentelle und Angewandte Physik, Universität Regensburg
Alexey Chernikov: Institut für Experimentelle und Angewandte Physik, Universität Regensburg
Ermin Malic: Chalmers University of Technology
Andreas Knorr: Institut für Theoretische Physik, Nichtlineare Optik und Quantenelektronik, Technische Universität Berlin
Nature Communications, 2016, vol. 7, issue 1, 1-6
Abstract:
Abstract Atomically thin transition metal dichalcogenides are direct-gap semiconductors with strong light–matter and Coulomb interactions. The latter accounts for tightly bound excitons, which dominate their optical properties. Besides the optically accessible bright excitons, these systems exhibit a variety of dark excitonic states. They are not visible in the optical spectra, but can strongly influence the coherence lifetime and the linewidth of the emission from bright exciton states. Here, we investigate the microscopic origin of the excitonic coherence lifetime in two representative materials (WS2 and MoSe2) through a study combining microscopic theory with spectroscopic measurements. We show that the excitonic coherence lifetime is determined by phonon-induced intravalley scattering and intervalley scattering into dark excitonic states. In particular, in WS2, we identify exciton relaxation processes involving phonon emission into lower-lying dark states that are operative at all temperatures.
Date: 2016
References: Add references at CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
https://www.nature.com/articles/ncomms13279 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms13279
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/ncomms13279
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().