EconPapers    
Economics at your fingertips  
 

Following lithiation fronts in paramagnetic electrodes with in situ magnetic resonance spectroscopic imaging

Mingxue Tang, Vincent Sarou-Kanian (), Philippe Melin, Jean-Bernard Leriche, Michel Ménétrier, Jean-Marie Tarascon, Michaël Deschamps and Elodie Salager ()
Additional contact information
Mingxue Tang: CNRS, CEMHTI UPR3079, Université d’Orléans
Vincent Sarou-Kanian: CNRS, CEMHTI UPR3079, Université d’Orléans
Philippe Melin: CNRS, CEMHTI UPR3079, Université d’Orléans
Jean-Bernard Leriche: Réseau sur le Stockage Electrochimique de l’Energie (RS2E), CNRS FR3459
Michel Ménétrier: Réseau sur le Stockage Electrochimique de l’Energie (RS2E), CNRS FR3459
Jean-Marie Tarascon: Réseau sur le Stockage Electrochimique de l’Energie (RS2E), CNRS FR3459
Michaël Deschamps: CNRS, CEMHTI UPR3079, Université d’Orléans
Elodie Salager: CNRS, CEMHTI UPR3079, Université d’Orléans

Nature Communications, 2016, vol. 7, issue 1, 1-8

Abstract: Abstract Li-ion batteries are invaluable for portable electronics and vehicle electrification. A better knowledge of compositional variations within the electrodes during battery operation is, however, still needed to keep improving their performance. Although essential in the medical field, magnetic resonance imaging of solid paramagnetic battery materials is challenging due to the short lifetime of their signals. Here we develop the scanning image-selected in situ spectroscopy approach, using the strongest commercially available magnetic field gradient. We demonstrate the 7Li magnetic resonance spectroscopic image of a 5 mm-diameter operating battery with a resolution of 100 μm. The time-resolved image-spectra enable the visualization in situ of the displacement of lithiation fronts inside thick paramagnetic electrodes during battery operation. Such observations are critical to identify the key limiting parameters for high-capacity and fast-cycling batteries. This non-invasive technique also offers opportunities to study devices containing paramagnetic materials while operating.

Date: 2016
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/ncomms13284 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms13284

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/ncomms13284

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms13284