EconPapers    
Economics at your fingertips  
 

Prompt gravity signal induced by the 2011 Tohoku-Oki earthquake

Jean-Paul Montagner (), Kévin Juhel, Matteo Barsuglia, Jean Paul Ampuero, Eric Chassande-Mottin, Jan Harms, Bernard Whiting, Pascal Bernard, Eric Clévédé and Philippe Lognonné
Additional contact information
Jean-Paul Montagner: Laboratoire de Sismologie, Institut de Physique du Globe, UMR/CNRS 7154
Kévin Juhel: Laboratoire de Sismologie, Institut de Physique du Globe, UMR/CNRS 7154
Matteo Barsuglia: APC, AstroParticule et Cosmologie, Université Paris Diderot, CNRS/IN2P3, CEA/Irfu, Observatoire de Paris, Sorbonne Paris Cité
Jean Paul Ampuero: Seismological Laboratory, California Institute of Technology, 1200 E. California Blvd.
Eric Chassande-Mottin: APC, AstroParticule et Cosmologie, Université Paris Diderot, CNRS/IN2P3, CEA/Irfu, Observatoire de Paris, Sorbonne Paris Cité
Jan Harms: National Institute for Nuclear Physics, Sezione Firenze
Bernard Whiting: 2001 Museum Road, University of Florida
Pascal Bernard: Laboratoire de Sismologie, Institut de Physique du Globe, UMR/CNRS 7154
Eric Clévédé: Laboratoire de Sismologie, Institut de Physique du Globe, UMR/CNRS 7154
Philippe Lognonné: Laboratoire de Sismologie, Institut de Physique du Globe, UMR/CNRS 7154

Nature Communications, 2016, vol. 7, issue 1, 1-7

Abstract: Abstract Transient gravity changes are expected to occur at all distances during an earthquake rupture, even before the arrival of seismic waves. Here we report on the search of such a prompt gravity signal in data recorded by a superconducting gravimeter and broadband seismometers during the 2011 Mw 9.0 Tohoku-Oki earthquake. During the earthquake rupture, a signal exceeding the background noise is observed with a statistical significance higher than 99% and an amplitude of a fraction of μGal, consistent in sign and order of magnitude with theoretical predictions from a first-order model. While prompt gravity signal detection with state-of-the-art gravimeters and seismometers is challenged by background seismic noise, its robust detection with gravity gradiometers under development could open new directions in earthquake seismology, and overcome fundamental limitations of current earthquake early-warning systems imposed by the propagation speed of seismic waves.

Date: 2016
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/ncomms13349 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms13349

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/ncomms13349

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms13349