Growing three-dimensional biomorphic graphene powders using naturally abundant diatomite templates towards high solution processability
Ke Chen,
Cong Li,
Liurong Shi,
Teng Gao,
Xiuju Song,
Alicja Bachmatiuk,
Zhiyu Zou,
Bing Deng,
Qingqing Ji,
Donglin Ma,
Hailin Peng,
Zuliang Du,
Mark Hermann Rümmeli,
Yanfeng Zhang () and
Zhongfan Liu ()
Additional contact information
Ke Chen: Center for Nanochemistry (CNC), Beijing Science and Engineering Research Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University
Cong Li: Center for Nanochemistry (CNC), Beijing Science and Engineering Research Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University
Liurong Shi: Center for Nanochemistry (CNC), Beijing Science and Engineering Research Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University
Teng Gao: Center for Nanochemistry (CNC), Beijing Science and Engineering Research Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University
Xiuju Song: Center for Nanochemistry (CNC), Beijing Science and Engineering Research Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University
Alicja Bachmatiuk: Centre of Polymer and Carbon Materials, Polish Academy of Sciences
Zhiyu Zou: Center for Nanochemistry (CNC), Beijing Science and Engineering Research Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University
Bing Deng: Center for Nanochemistry (CNC), Beijing Science and Engineering Research Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University
Qingqing Ji: Center for Nanochemistry (CNC), Beijing Science and Engineering Research Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University
Donglin Ma: Center for Nanochemistry (CNC), Beijing Science and Engineering Research Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University
Hailin Peng: Center for Nanochemistry (CNC), Beijing Science and Engineering Research Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University
Zuliang Du: Key Laboratory for Special Functional Materials (Ministry of Education), Henan University
Mark Hermann Rümmeli: Centre of Polymer and Carbon Materials, Polish Academy of Sciences
Yanfeng Zhang: Center for Nanochemistry (CNC), Beijing Science and Engineering Research Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University
Zhongfan Liu: Center for Nanochemistry (CNC), Beijing Science and Engineering Research Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University
Nature Communications, 2016, vol. 7, issue 1, 1-9
Abstract:
Abstract Mass production of high-quality graphene with low cost is the footstone for its widespread practical applications. We present herein a self-limited growth approach for producing graphene powders by a small-methane-flow chemical vapour deposition process on naturally abundant and industrially widely used diatomite (biosilica) substrates. Distinct from the chemically exfoliated graphene, thus-produced biomorphic graphene is highly crystallized with atomic layer-thickness controllability, structural designability and less noncarbon impurities. In particular, the individual graphene microarchitectures preserve a three-dimensional naturally curved surface morphology of original diatom frustules, effectively overcoming the interlayer stacking and hence giving excellent dispersion performance in fabricating solution-processible electrodes. The graphene films derived from as-made graphene powders, compatible with either rod-coating, or inkjet and roll-to-roll printing techniques, exhibit much higher electrical conductivity (∼110,700 S m−1 at 80% transmittance) than previously reported solution-based counterparts. This work thus puts forward a practical route for low-cost mass production of various powdery two-dimensional materials.
Date: 2016
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.nature.com/articles/ncomms13440 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms13440
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/ncomms13440
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().