Self-assembly of diphenylalanine peptide with controlled polarization for power generation
Vu Nguyen,
Ren Zhu,
Kory Jenkins and
Rusen Yang ()
Additional contact information
Vu Nguyen: University of Minnesota
Ren Zhu: University of Minnesota
Kory Jenkins: University of Minnesota
Rusen Yang: University of Minnesota
Nature Communications, 2016, vol. 7, issue 1, 1-6
Abstract:
Abstract Peptides have attracted considerable attention due to their biocompatibility, functional molecular recognition and unique biological and electronic properties. The strong piezoelectricity in diphenylalanine peptide expands its technological potential as a smart material. However, its random and unswitchable polarization has been the roadblock to fulfilling its potential and hence the demonstration of a piezoelectric device remains lacking. Here we show the control of polarization with an electric field applied during the peptide self-assembly process. Uniform polarization is obtained in two opposite directions with an effective piezoelectric constant d33 reaching 17.9 pm V−1. We demonstrate the power generation with a peptide-based power generator that produces an open-circuit voltage of 1.4 V and a power density of 3.3 nW cm−2. Devices enabled by peptides with controlled piezoelectricity provide a renewable and biocompatible energy source for biomedical applications and open up a portal to the next generation of multi-functional electronics compatible with human tissue.
Date: 2016
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.nature.com/articles/ncomms13566 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms13566
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/ncomms13566
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().