Tracking the coherent generation of polaron pairs in conjugated polymers
Antonietta De Sio,
Filippo Troiani,
Margherita Maiuri,
Julien Réhault,
Ephraim Sommer,
James Lim,
Susana F. Huelga,
Martin B. Plenio,
Carlo Andrea Rozzi,
Giulio Cerullo,
Elisa Molinari and
Christoph Lienau ()
Additional contact information
Antonietta De Sio: Institut für Physik, Carl von Ossietzky Universität
Filippo Troiani: Istituto Nanoscienze—CNR
Margherita Maiuri: IFN-CNR, Politecnico di Milano
Julien Réhault: IFN-CNR, Politecnico di Milano
Ephraim Sommer: Institut für Physik, Carl von Ossietzky Universität
James Lim: Institut für Theoretische Physik and IQST, Universität Ulm
Susana F. Huelga: Institut für Theoretische Physik and IQST, Universität Ulm
Martin B. Plenio: Institut für Theoretische Physik and IQST, Universität Ulm
Carlo Andrea Rozzi: Istituto Nanoscienze—CNR
Giulio Cerullo: IFN-CNR, Politecnico di Milano
Elisa Molinari: Istituto Nanoscienze—CNR
Christoph Lienau: Institut für Physik, Carl von Ossietzky Universität
Nature Communications, 2016, vol. 7, issue 1, 1-8
Abstract:
Abstract The optical excitation of organic semiconductors not only generates charge-neutral electron-hole pairs (excitons), but also charge-separated polaron pairs with high yield. The microscopic mechanisms underlying this charge separation have been debated for many years. Here we use ultrafast two-dimensional electronic spectroscopy to study the dynamics of polaron pair formation in a prototypical polymer thin film on a sub-20-fs time scale. We observe multi-period peak oscillations persisting for up to about 1 ps as distinct signatures of vibronic quantum coherence at room temperature. The measured two-dimensional spectra show pronounced peak splittings revealing that the elementary optical excitations of this polymer are hybridized exciton-polaron-pairs, strongly coupled to a dominant underdamped vibrational mode. Coherent vibronic coupling induces ultrafast polaron pair formation, accelerates the charge separation dynamics and makes it insensitive to disorder. These findings open up new perspectives for tailoring light-to-current conversion in organic materials.
Date: 2016
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://www.nature.com/articles/ncomms13742 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms13742
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/ncomms13742
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().