Ultrafast electronic response of graphene to a strong and localized electric field
Elisabeth Gruber (),
Richard A. Wilhelm,
Rémi Pétuya,
Valerie Smejkal,
Roland Kozubek,
Anke Hierzenberger,
Bernhard C. Bayer,
Iñigo Aldazabal,
Andrey K. Kazansky,
Florian Libisch,
Arkady V. Krasheninnikov,
Marika Schleberger (),
Stefan Facsko,
Andrei G. Borisov (),
Andrés Arnau () and
Friedrich Aumayr ()
Additional contact information
Elisabeth Gruber: TU Wien, Institute of Applied Physics
Richard A. Wilhelm: TU Wien, Institute of Applied Physics
Rémi Pétuya: Donostia International Physics Centre (DIPC)
Valerie Smejkal: TU Wien, Institute of Applied Physics
Roland Kozubek: Universität Duisburg-Essen, Fakultät für Physik and Cenide
Anke Hierzenberger: Universität Duisburg-Essen, Fakultät für Physik and Cenide
Bernhard C. Bayer: University of Vienna, Faculty of Physics
Iñigo Aldazabal: Centro de Fisica de Materiales (CFM), Centro Mixto CSIC-UPV/EHU - MPC
Andrey K. Kazansky: Donostia International Physics Centre (DIPC)
Florian Libisch: TU Wien, Institute for Theoretical Physics
Arkady V. Krasheninnikov: Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Ion Beam Physics and Materials Research
Marika Schleberger: Universität Duisburg-Essen, Fakultät für Physik and Cenide
Stefan Facsko: Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Ion Beam Physics and Materials Research
Andrei G. Borisov: CNRS-Université Paris Sud, Institut des Sciences Moléculaires d’Orsay - UMR 8214
Andrés Arnau: Donostia International Physics Centre (DIPC)
Friedrich Aumayr: TU Wien, Institute of Applied Physics
Nature Communications, 2016, vol. 7, issue 1, 1-7
Abstract:
Abstract The way conduction electrons respond to ultrafast external perturbations in low dimensional materials is at the core of the design of future devices for (opto)electronics, photodetection and spintronics. Highly charged ions provide a tool for probing the electronic response of solids to extremely strong electric fields localized down to nanometre-sized areas. With ion transmission times in the order of femtoseconds, we can directly probe the local electronic dynamics of an ultrathin foil on this timescale. Here we report on the ability of freestanding single layer graphene to provide tens of electrons for charge neutralization of a slow highly charged ion within a few femtoseconds. With values higher than 1012 A cm−2, the resulting local current density in graphene exceeds previously measured breakdown currents by three orders of magnitude. Surprisingly, the passing ion does not tear nanometre-sized holes into the single layer graphene. We use time-dependent density functional theory to gain insight into the multielectron dynamics.
Date: 2016
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.nature.com/articles/ncomms13948 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms13948
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/ncomms13948
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().