Observation of the topological soliton state in the Su–Schrieffer–Heeger model
Eric J. Meier,
Fangzhao Alex An and
Bryce Gadway ()
Additional contact information
Eric J. Meier: University of Illinois at Urbana-Champaign
Fangzhao Alex An: University of Illinois at Urbana-Champaign
Bryce Gadway: University of Illinois at Urbana-Champaign
Nature Communications, 2016, vol. 7, issue 1, 1-6
Abstract:
Abstract The Su–Schrieffer–Heeger (SSH) model, which captures the most striking transport properties of the conductive organic polymer trans-polyacetylene, provides perhaps the most basic model system supporting topological excitations. The alternating bond pattern of polyacetylene chains is captured by the bipartite sublattice structure of the SSH model, emblematic of one-dimensional chiral symmetric topological insulators. This structure supports two distinct nontrivial topological phases, which, when interfaced with one another or with a topologically trivial phase, give rise to topologically protected, dispersionless boundary states. Here, using 87Rb atoms in a momentum-space lattice, we realize fully tunable condensed matter Hamiltonians, allowing us to probe the dynamics and equilibrium properties of the SSH model. We report on the experimental quantum simulation of this model and observation of the localized topological soliton state through quench dynamics, phase-sensitive injection, and adiabatic preparation.
Date: 2016
References: Add references at CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
https://www.nature.com/articles/ncomms13986 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms13986
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/ncomms13986
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().