Ultrafast evolution and transient phases of a prototype out-of-equilibrium Mott–Hubbard material
G. Lantz (),
B. Mansart,
D. Grieger,
D. Boschetto,
N. Nilforoushan,
E. Papalazarou,
N. Moisan,
L. Perfetti,
V. L. R. Jacques,
D. Le Bolloc'h,
C. Laulhé,
S. Ravy,
Rueff J-P,
T. E. Glover,
M. P. Hertlein,
Z. Hussain,
S. Song,
M. Chollet,
M. Fabrizio () and
M. Marsi ()
Additional contact information
G. Lantz: Laboratoire de Physique des Solides, CNRS, University Paris-Sud, Université Paris-Saclay
B. Mansart: Laboratoire de Physique des Solides, CNRS, University Paris-Sud, Université Paris-Saclay
D. Grieger: International School for Advanced Studies SISSA
D. Boschetto: LOA, ENSTA, CNRS, Ecole Polytechnique
N. Nilforoushan: Laboratoire de Physique des Solides, CNRS, University Paris-Sud, Université Paris-Saclay
E. Papalazarou: Laboratoire de Physique des Solides, CNRS, University Paris-Sud, Université Paris-Saclay
N. Moisan: Laboratoire de Physique des Solides, CNRS, University Paris-Sud, Université Paris-Saclay
L. Perfetti: Laboratoire des Solides Irradiés, Ecole Polytechnique-CEA/SSM-CNRS UMR 7642
V. L. R. Jacques: Laboratoire de Physique des Solides, CNRS, University Paris-Sud, Université Paris-Saclay
D. Le Bolloc'h: Laboratoire de Physique des Solides, CNRS, University Paris-Sud, Université Paris-Saclay
C. Laulhé: Synchrotron SOLEIL, L’Orme des Merisiers
S. Ravy: Laboratoire de Physique des Solides, CNRS, University Paris-Sud, Université Paris-Saclay
Rueff J-P: Synchrotron SOLEIL, L’Orme des Merisiers
T. E. Glover: Advanced Light Source, Lawrence Berkeley National Laboratory
M. P. Hertlein: Advanced Light Source, Lawrence Berkeley National Laboratory
Z. Hussain: Advanced Light Source, Lawrence Berkeley National Laboratory
S. Song: LCLS, SLAC National Accelerator Laboratory
M. Chollet: LCLS, SLAC National Accelerator Laboratory
M. Fabrizio: International School for Advanced Studies SISSA
M. Marsi: Laboratoire de Physique des Solides, CNRS, University Paris-Sud, Université Paris-Saclay
Nature Communications, 2017, vol. 8, issue 1, 1-7
Abstract:
Abstract The study of photoexcited strongly correlated materials is attracting growing interest since their rich phase diagram often translates into an equally rich out-of-equilibrium behaviour. With femtosecond optical pulses, electronic and lattice degrees of freedom can be transiently decoupled, giving the opportunity of stabilizing new states inaccessible by quasi-adiabatic pathways. Here we show that the prototype Mott–Hubbard material V2O3 presents a transient non-thermal phase developing immediately after ultrafast photoexcitation and lasting few picoseconds. For both the insulating and the metallic phase, the formation of the transient configuration is triggered by the excitation of electrons into the bonding a1g orbital, and is then stabilized by a lattice distortion characterized by a hardening of the A1g coherent phonon, in stark contrast with the softening observed upon heating. Our results show the importance of selective electron–lattice interplay for the ultrafast control of material parameters, and are relevant for the optical manipulation of strongly correlated systems.
Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.nature.com/articles/ncomms13917 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms13917
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/ncomms13917
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().