Sixfold improved single particle measurement of the magnetic moment of the antiproton
H. Nagahama (),
C. Smorra,
S. Sellner,
J. Harrington,
T. Higuchi,
M. J. Borchert,
T. Tanaka,
M. Besirli,
A. Mooser,
G. Schneider,
K. Blaum,
Y. Matsuda,
C. Ospelkaus,
W. Quint,
J. Walz,
Y. Yamazaki and
S. Ulmer ()
Additional contact information
H. Nagahama: RIKEN, Ulmer Initiative Research Unit, 2-1 Hirosawa
C. Smorra: RIKEN, Ulmer Initiative Research Unit, 2-1 Hirosawa
S. Sellner: RIKEN, Ulmer Initiative Research Unit, 2-1 Hirosawa
J. Harrington: Max-Planck-Institut für Kernphysik
T. Higuchi: RIKEN, Ulmer Initiative Research Unit, 2-1 Hirosawa
M. J. Borchert: Institut für Quantenoptik, Leibniz Universität Hannover
T. Tanaka: RIKEN, Ulmer Initiative Research Unit, 2-1 Hirosawa
M. Besirli: RIKEN, Ulmer Initiative Research Unit, 2-1 Hirosawa
A. Mooser: RIKEN, Ulmer Initiative Research Unit, 2-1 Hirosawa
G. Schneider: RIKEN, Ulmer Initiative Research Unit, 2-1 Hirosawa
K. Blaum: Max-Planck-Institut für Kernphysik
Y. Matsuda: Graduate School of Arts and Sciences, University of Tokyo
C. Ospelkaus: Institut für Quantenoptik, Leibniz Universität Hannover
W. Quint: GSI-Helmholtzzentrum für Schwerionenforschung GmbH
J. Walz: Institut für Physik, Johannes Gutenberg-Universität
Y. Yamazaki: RIKEN, Atomic Physics Research Unit
S. Ulmer: RIKEN, Ulmer Initiative Research Unit, 2-1 Hirosawa
Nature Communications, 2017, vol. 8, issue 1, 1-7
Abstract:
Abstract Our current understanding of the Universe comes, among others, from particle physics and cosmology. In particle physics an almost perfect symmetry between matter and antimatter exists. On cosmological scales, however, a striking matter/antimatter imbalance is observed. This contradiction inspires comparisons of the fundamental properties of particles and antiparticles with high precision. Here we report on a measurement of the g-factor of the antiproton with a fractional precision of 0.8 parts per million at 95% confidence level. Our value /2=2.7928465(23) outperforms the previous best measurement by a factor of 6. The result is consistent with our proton g-factor measurement gp/2=2.792847350(9), and therefore agrees with the fundamental charge, parity, time (CPT) invariance of the Standard Model of particle physics. Additionally, our result improves coefficients of the standard model extension which discusses the sensitivity of experiments with respect to CPT violation by up to a factor of 20.
Date: 2017
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/ncomms14084 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms14084
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/ncomms14084
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().