EconPapers    
Economics at your fingertips  
 

Design principles for shift current photovoltaics

Ashley M. Cook, Benjamin M. Fregoso, Fernando de Juan, Sinisa Coh and Joel E. Moore ()
Additional contact information
Ashley M. Cook: University of California
Benjamin M. Fregoso: University of California
Fernando de Juan: University of California
Sinisa Coh: University of California
Joel E. Moore: University of California

Nature Communications, 2017, vol. 8, issue 1, 1-9

Abstract: Abstract While the basic principles of conventional solar cells are well understood, little attention has gone towards maximizing the efficiency of photovoltaic devices based on shift currents. By analysing effective models, here we outline simple design principles for the optimization of shift currents for frequencies near the band gap. Our method allows us to express the band edge shift current in terms of a few model parameters and to show it depends explicitly on wavefunctions in addition to standard band structure. We use our approach to identify two classes of shift current photovoltaics, ferroelectric polymer films and single-layer orthorhombic monochalcogenides such as GeS, which display the largest band edge responsivities reported so far. Moreover, exploring the parameter space of the tight-binding models that describe them we find photoresponsivities that can exceed 100 mA W−1. Our results illustrate the great potential of shift current photovoltaics to compete with conventional solar cells.

Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
https://www.nature.com/articles/ncomms14176 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms14176

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/ncomms14176

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms14176