Wafer-scale integration of sacrificial nanofluidic chips for detecting and manipulating single DNA molecules
Chao Wang (),
Sung-Wook Nam,
John M. Cotte,
Christopher V. Jahnes,
Evan G. Colgan,
Robert L. Bruce,
Markus Brink,
Michael F. Lofaro,
Jyotica V. Patel,
Lynne M. Gignac,
Eric A. Joseph,
Satyavolu Papa Rao,
Gustavo Stolovitzky (),
Stanislav Polonsky () and
Qinghuang Lin ()
Additional contact information
Chao Wang: IBM T.J. Watson Research Center
Sung-Wook Nam: IBM T.J. Watson Research Center
John M. Cotte: IBM T.J. Watson Research Center
Christopher V. Jahnes: IBM T.J. Watson Research Center
Evan G. Colgan: IBM T.J. Watson Research Center
Robert L. Bruce: IBM T.J. Watson Research Center
Markus Brink: IBM T.J. Watson Research Center
Michael F. Lofaro: IBM T.J. Watson Research Center
Jyotica V. Patel: IBM T.J. Watson Research Center
Lynne M. Gignac: IBM T.J. Watson Research Center
Eric A. Joseph: IBM T.J. Watson Research Center
Satyavolu Papa Rao: IBM T.J. Watson Research Center
Gustavo Stolovitzky: IBM T.J. Watson Research Center
Stanislav Polonsky: IBM T.J. Watson Research Center
Qinghuang Lin: IBM T.J. Watson Research Center
Nature Communications, 2017, vol. 8, issue 1, 1-9
Abstract:
Abstract Wafer-scale fabrication of complex nanofluidic systems with integrated electronics is essential to realizing ubiquitous, compact, reliable, high-sensitivity and low-cost biomolecular sensors. Here we report a scalable fabrication strategy capable of producing nanofluidic chips with complex designs and down to single-digit nanometre dimensions over 200 mm wafer scale. Compatible with semiconductor industry standard complementary metal-oxide semiconductor logic circuit fabrication processes, this strategy extracts a patterned sacrificial silicon layer through hundreds of millions of nanoscale vent holes on each chip by gas-phase Xenon difluoride etching. Using single-molecule fluorescence imaging, we demonstrate these sacrificial nanofluidic chips can function to controllably and completely stretch lambda DNA in a two-dimensional nanofluidic network comprising channels and pillars. The flexible nanofluidic structure design, wafer-scale fabrication, single-digit nanometre channels, reliable fluidic sealing and low thermal budget make our strategy a potentially universal approach to integrating functional planar nanofluidic systems with logic circuits for lab-on-a-chip applications.
Date: 2017
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/ncomms14243 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms14243
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/ncomms14243
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().